

STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION AVIATION OFFICE

Statewide Airfield Pavement Management Program

Arcadia Municipal Airport– X06
(General Aviation)
Arcadia, Florida
(District 1)

TABLE OF CONTENTS

SECT	ION PAGE N	Ю.
Execut	ive Summary	. iii
1. In	ntroduction	1
2. N	Network Definition and Pavement Inventory	.10
3. P	avement Condition	.14
4. P	avement Condition Prediction	.20
5. N	Maintenance Policies and costs	.21
	avement Rehabilitation Needs Analysis	
	Maintenance and Rehabilitation Plan	
	isual Aids	
9. R	Recommendations	.34
LIST (OF FIGURES	
Figure	1-1: Pavement Life Cycle	4
Figure	1-2: PCI Rating Scale	6
Figure	2-1: Pavement Area by Surface Type	.12
Figure	3-1: Network PCI Distribution by Rating Category	.16
	3-1a: Condition Rating Summary	
	3-2: Percentage of Pavement Area within Each PCI Range by Pavement Use	
Figure	4-1: Predicted PCI by Pavement Use	.20
Figure	6-1: Budget Scenario Analysis	.30
LIST (OF TABLES	
Table I	E: Condition Summary by Branch	. iii
Table I	II: Condition Summary by Pavement Use	. iv
Table I	III: Condition Summary by Pavement Rank	. iv
	IV: Immediate Major M&R Needs	
Table V	V: 10-Year M&R Costs under Unlimited Funding Scenario	V
Table 1	1-1: Sampling Rate for FDOT Condition Surveys	5
Table 2	2-1: Construction Since Last Inspection & Anticipated Construction Activity	.11
	2-2: Pavement Area by Pavement Use	
	2-3: Branch and Section Inventory	
Table 3	3-1: Pavement Distresses for Asphalt Concrete Surfaces	.14
	3-2: Condition by Pavement Use	
	5-1: Routine Maintenance Activities for Airfield Pavements	
Table 5	5-2: Critical PCI for General Aviation Airports	.23
Table 5	5-3: FDOT Minimum Service Level PCI for General Aviation Airports	.23
	5-4: M&R Activities for General Aviation Airports	
	5-5: Maintenance Unit Costs for FDOT	
	5-6: M&R Activities and Unit Costs by Condition for General Aviation Airports	
	6-1: Summary of Immediate Major M&R Needs Option No. 1	
	6-2: Summary of Immediate Major M&R Needs Option No. 2	

i

TABLE OF CONTENTS

SECTION	PAGE NO) <u>.</u>
	&R Costs under Unlimited Funding Scenario	
APPENDICI	E S	
Appendix A	Network Definition Map	
	System Inventory Map	
	Pavement Inventory Table	
	Work History Report	
Appendix B	2011 Condition Map	
	Pavement Condition Index Table	
Appendix C	Branch Condition Report	
	Section Condition Report	
Appendix D	Pavement Condition Prediction Table	
	Predicted PCI by Pavement Use Graph	
Appendix E	Year 1 Maintenance Activities Table	
Appendix F	Major M&R Plan by Year under Unlimited Funding Scenario Table	
Appendix G	10-Year M&R Map	
Appendix H	Photographs	
Appendix I	PCI Re-inspection Report	

EXECUTIVE SUMMARY

In 2010, the Florida Department of Transportation (FDOT) Aviation Office selected a Consultant team consisting of Kimley-Horn and Associates and their Subconsultants, MACTEC Engineering and Consulting and All About Pavements, Inc., to provide services in support of FDOT in the continuing evaluation and updating of the existing Statewide Airfield Pavement Management Program (SAPMP) to be completed over fiscal years 2011 and 2012.

The tasks required to achieve this objective at Arcadia Municipal Airport included:

- ➤ Obtain recent construction history from the Airport to update the Pavement Inventory CADD drawings from the previous SAPMP update,
- ➤ Perform a visual Pavement Condition Index (PCI) survey of the airfield pavements at the Airport,
- ➤ Update the MicroPAVER database to analyze the PCI field data and determine the current condition of the airfield pavements,
- > Predict the future deterioration of the pavements,
- ➤ Develop a 10-year M&R plan to address the pavement needs at Arcadia Municipal Airport, and
- ➤ Provide the estimated costs associated with the suggested immediate and future M&R activities

During February 2011, the PCI survey was performed at Arcadia Municipal Airport. The results of the survey indicate that, based on a numerical scale of 0 to 100, the overall area-weighted average PCI of the airfield pavements in 2011 is 61, representing a Fair overall network condition.

Table I below summarizes the overall condition summary by network branch.

Table I: Condition Summary by Branch

Branch Name	Area Weighted PCI	Condition Rating	FDOT Minimum Service Level	MicroPAVER Minimum PCI	Action Required
Apron	65	Fair	60	65	
Runway 5-23	58	Fair	75	65	X
Taxiway	70	Fair	65	65	
Taxiway Hangar	31	Very Poor	65	65	X

Tables II and III below illustrate the area-weighted PCI computed individually for each pavement use and rank, respectively.

Table II: Condition Summary by Pavement Use

Use	Average Area- Weighted PCI	Condition Rating
Runway	58	Fair
Taxiway	63	Fair
Apron	65	Fair
All (Weighted)	61	Fair

Table III: Condition Summary by Pavement Rank

Rank*	Average Area- Weighted PCI	Condition Rating
Primary	63	Fair
Tertiary	31	Very Poor
All (Weighted)	61	Fair

^{*}The pavement rank for the airport pavement network is listed on Table 2-3.

The immediate M&R needs, or needs that have been programmed to be completed in the first year of the 10-year M&R plan based on an unlimited budget at Arcadia Municipal Airport, include: Apron, Runway 5-23, Taxiway, and Taxiway Hangar. The Apron, Runway 5-23 and Taxiway exhibited mostly low severity distresses such as weathering and raveling, longitudinal and transverse cracking, and block cracking. The extent of these distresses warrant mill and overlay activity. The Taxiway Hangar exhibited similar distresses in higher severities, which is why this section of pavement warrants reconstruction activity. The immediate needs are summarized in Table IV below.

Table IV: Immediate Major M&R Needs

Branch Name	Section ID	Surface Type	Section Area (ft²)	Major M&R Costs*	PCI Before M&R	M&R Activity	PCI After Maint.
Apron	4110	AC	13,435	\$42,279.98	61	Mill and Overlay	100
Runway 5-23	6105	AC	277,500	\$1,187,978.06	57	Mill and Overlay	100
Taxiway	115	AC	4,310	\$27,109.90	46	Mill and Overlay	100
Taxiway Hangar	210	AC	12,500	\$170,250.06	28	Reconstruction	100
Taxiway Hangar	220	AC	7,050	\$49,512.16	39	Reconstruction	100
Taxiway Hangar	230	AC	18,750	\$255,375.08	28	Reconstruction	100
			Total	\$1,732,505.24	43		100

^{*} Costs are adjusted for inflation.

A forecast of Major M&R needs for a 10-year period, starting from 2011, was developed using an unlimited budget. The analysis identified ongoing maintenance needs and major M&R during that interval. The results of this analysis are provided in Table V below.

Table V: 10-Year M&R Costs under Unlimited Funding Scenario

Year	Preventative	Major M&R	Total Year Cost
2011	\$48,736.21	\$1,732,505.23	\$1,781,241.44
2012	\$35,343.41	\$172,644.59	\$207,988.00
2013	\$40,068.62	\$0.00	\$40,068.62
2014	\$45,020.31	\$0.00	\$45,020.31
2015	\$1,443.47	\$484,783.46	\$486,226.93
2016	\$2,030.63	\$0.00	\$2,030.63
2017	\$2,658.22	\$0.00	\$2,658.22
2018	\$4,253.02	\$0.00	\$4,253.02
2019	\$12,690.86	\$0.00	\$12,690.86
2020	\$19,229.94	\$0.00	\$19,229.94
Total	\$211,474.69	\$2,389,933.28	\$2,601,407.97

Note: Costs are adjusted for inflation.

The implementation of the 10-Year major M&R plan is expected to provide an improvement in the overall condition of the airfield pavement, where the area-weighted PCI would increase from 61 in 2011 to 88 in 2020. Appendix F lists the major M&R for the 10-Year program. Appendix G graphically depicts the activity.

It is important to note that although preventative and some major M&R activities would have to be conducted over several years, the area-weighted PCI value for all Arcadia Municipal Airport pavements in 2020 may remain near 88. The airport manager should realize that what is most important is that the pavement repair work (preventative and major M&R) that has been identified for Arcadia Municipal Airport is conducted at some point in the 10-year plan.

1. INTRODUCTION

The State of Florida has more than 100 public airports that are vital to the Florida economy as well as the economy of the United States. There are millions of square yards of pavement for the runways, taxiways, aprons and other areas of these airports that support aircraft operations. The timely and proper maintenance and rehabilitation (M&R) of these pavements allows the airports to operate efficiently, economically and without excessive down time.

In order to support the planning, scheduling, and design of the M&R activities based on pavement evaluation and pavement management performance trends, the Florida Department of Transportation (FDOT) Aviation Office implemented the Statewide Airfield Pavement Management Program (SAPMP) in 1992.

In 2010, the FDOT Aviation Office selected a Consultant team consisting of Kimley-Horn and Associates and their Subconsultants, MACTEC Engineering and Consulting and All About Pavements, Inc., to provide services in support of FDOT in the continuing evaluation and updating of the existing SAPMP to be completed over fiscal years 2011 and 2012.

This report discusses the work performed, a summary of the findings, results, and recommendations for M&R planning associated with the update to the SAPMP. It also describes the procedures used to ensure that the appropriate engineering and scientific standards of care, quality, budget, and schedule requirements are implemented during the performance of the SAPMP.

1.1 Purpose

This Florida Airport Pavement Evaluation Report is intended to:

- Describe, briefly, the SAPMP and the roles and responsibilities of the program's participants;
- Provide background information on pavement management principles, objectives, and benefits to this airport;
- Outline the procedures used to collect, evaluate and report pavement inspection results at this airport;
- Present the findings from the pavement inspection;
- Analyze and discuss the needs for Maintenance and Rehabilitation (M&R) activities and associated costs for this airport.

1.2 FDOT Statewide Airfield Pavement Management Program

In 1992, the FDOT implemented the SAPMP to improve the knowledge of pavement conditions at public airports in the State system, identify maintenance needs at individual airports, automate information management, and establish standards to address future needs. The 1992 SAPMP provided valuable information for establishing and performing pavement M&R.

In 1992/1993, and 1998/1999, the FDOT Aviation Office participated in the development of a proprietary software pavement management system and developed and populated a pavement management database that provided valuable information for establishing M&R policies, estimating M&R costs, and developing recommendations for performing routine pavement maintenance. This system, AIRPAV, was implemented, and initial condition surveys were

performed in 1992 and 1993. The SAPMP was updated with additional surveys in 1998 and 1999.

In 2004, the FDOT Aviation Office undertook a project to update the pavement management system software utilized for the SAPMP. This project involved a review of the AIRPAV software and other available pavement management system software. As a result of this review, MicroPAVER was selected as the software for the update project. Data from the 1998/1999 condition surveys were converted to the MicroPAVER system, and the inventory of the pavement systems and drawings of the pavements were updated to reflect maintenance, rehabilitation, and construction activities since 1998/1999. The pavements were inspected between 2006 and 2008, and an updated M&R program was developed based on the new condition of the airfield pavements. As part of the update, procedures for the inspection and collection of pavement data were developed, and a website (www.floridaairportpavement.com) was created for the input of data under secure procedures.

Currently, airports using the AIP Grant Program are required by the Federal Aviation Administration (FAA) to develop a pavement maintenance program (FAA/AC 150/5380-6B "Guidelines and Procedures for Maintenance of Airport Pavements") using trained personnel to perform a detailed inspection of airfield pavements. The inspections are required to be performed at least once a year or every 3 years if pavement inspection is characterized in the form of a Pavement Condition Index (PCI) survey (such as ASTM D 5340 "Standard Test Method for Airport Pavement Condition Index Surveys", (2004 edition)). The 2004 edition was utilized in lieu of the 2010 edition to maintain database integrity and benefit of pavement performance curves from the previous inspections.

In 2010, the FDOT Aviation Office selected a team consisting of the Consultant and their Subconsultants to provided services in support of FDOT in the continuing evaluation and updating of the existing SAPMP to be completed over fiscal years 2011 and 2012.

1.3 Organization

1.3.1 Aviation Office Program Manager Role

The Aviation Office Airport Engineering Manager serves as the Aviation Office Program Manager (AO-PM) monitoring the work of the Consultant. The AO-PM has review and approval authority for each program task and also manages the day-to-day details of the SAPMP and the updates.

1.3.2 Consultant Role

The Consultant (Kimley-Horn and Associates, Inc.) and their Subconsultants (MACTEC Engineering and Consulting and All About Pavements, Inc.) provide technical and administrative assistance to the AO-PM during the execution of this program, which involves the continuing evaluation of airport pavements and updating of the SAPMP based upon procedures outlined in FAA Advisory Circular 150/5380-6B "Guidelines and Procedures for Maintenance of Airport Pavements" and ASTM D 5340 "Standard Test Method for Airport Pavement Condition Index Surveys" (2004).

1.3.3 Airport Role

The airports are the ultimate client for each of the field inspections and reports. Individual airports will be provided final deliverables prepared by the Consultant that have been reviewed and approved by the AO-PM. The airport should provide a current Airport Layout Plan (ALP) to the Consultant and, if they participated in the previous SAPMP update, indicate any construction activity that has been performed since the previous inspections.

1.4 Pavement Types and Pavement Management

1.4.1 Pavement basics

A pavement is a prepared surface designed to provide a continuous smooth ride at a certain speed and to support an estimated amount of traffic for a certain number of years. Pavements are constructed of a combination of subgrade soils, subbases, bases and surfacing. There are mainly two types of pavements;

- Flexible pavement, composed of an asphalt concrete (AC) surface, and
- Rigid pavement composed of a Portland Cement Concrete (PCC) surface.

Both pavement types use a combination of layered materials and thicknesses in order to support the traffic loads and protect the underlying natural subgrade soil. Flexible pavements (AC) dissipate the load from layer to layer until the load magnitude is small enough to be supported by the subgrade soil. In rigid pavements (PCC), the Portland Cement Concrete supports most of the load, and the base or subbase layer is mainly constructed to provide a smooth and continuous platform for the construction of the concrete surface.

A small percentage of the airport pavements in Florida are composed of asphalt concrete surface over Portland Cement Concrete (APC). This pavement type is known as "composite" pavement.

Due to the different nature of the pavement types and their materials, flexible and rigid pavements have different distresses and failure mechanisms. Understanding the mechanics and failure modes of both pavement types will assist engineers in making adequate and long lasting repairs or rehabilitation to the pavement structures.

1.4.2 Pavement Management System Concept

The SAPMP utilized a Pavement Management System (PMS) to develop the M&R recommendations discussed in this report. A PMS is a tool to assist engineers, planners and managing agencies in making decisions when planning pavement M&R. The management of pavements involves scheduling pavement maintenance and rehabilitation before pavements deteriorate to a condition where reconstruction (the most expensive alternative) is the only solution. Figure 1-1 below, taken from FAA/AC 5380-7A "Airport Pavement Management Program", illustrates how a pavement generally deteriorates and the relative cost of rehabilitation at various times throughout its life. Note that during the first 75 percent of a pavement's life, it performs relatively well. After that, however, it begins to deteriorate rapidly. The number of years a pavement stays in "good" condition depends on how well it is maintained. As the illustration demonstrates, the cost of maintaining the pavement above a critical condition before rapid deterioration occurs is much less compared to maintaining pavements after substantial deterioration has occurred.

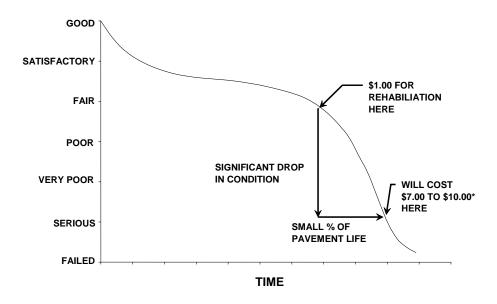


Figure 1-1: Pavement Life Cycle

Source: FAA/AC 150/5380-7A "Airport Pavement Management Program" *Modified to reflect current construction costs.

Pavements deteriorate at an accelerated rate with increasing traffic and limited M&R resources. Planned maintenance and rehabilitation, essentially preventing pavements from reaching deteriorated conditions, helps managers/owners/agencies maximize the use of their budgets and prolong the life of the pavements. A PMS provides a tool to schedule and plan maintenance and rehabilitation based on engineering information and existing and predicted conditions of pavements.

There are several components or elements that are essential to a PMS. The first steps in the implementation of a PMS are to know and clearly identify what needs to be managed, the limits of the managing agency's responsibilities and the condition of the existing pavements. Once the cause and the extent of pavement problems are known, the appropriate maintenance and/or rehabilitation can be planned. By using local unit costs and expected yearly budgets, a multi-year M&R plan can be determined.

1.4.3 Pavement Inspection Methodology for the SAPMP

Pavement condition assessment is one of the primary decision variables in any airport PMS. Pavement condition assessments generally include visual surveys in accordance with ASTM D 5340, "Standard Test Method for Airport Pavement Condition Index Surveys" and structural evaluation. Pavement condition surveys assess the functional condition of the pavement surface. Typically, most problems within a pavement structure will eventually reflect to the pavement surface. The structural condition and relative support of the pavement layers can be assessed utilizing non-destructive deflection testing (NDT) as well as other in-depth engineering evaluation or sampling and testing methods.

For the Statewide Aviation Pavement Management Program update, only visual surveys were performed. Further structural and geotechnical testing should be conducted to determine the appropriate rehabilitation methods during the design process.

In preparation of the PCI surveys, the airfield pavements are divided into sample units as established in FAA AC 150/5380-6B and ASTM D 5340. Further discussion of how the airport pavements are divided and subdivided into units by construction and use can be found in Section 2 "Network Definition and Pavement Inventory" of this report.

Sample unit sizes are approximately 5000 ± 2000 square feet for AC-surfaced pavements and 20 ± 8 slabs for PCC-surfaced pavements. Prior to conducting the field inspections, the sampling plan was developed based on previous sampling and modified based on the available knowledge of Branches, Sections, use patterns, construction types and history. The sampling rate used for the FDOT Statewide Airfield Pavement Management Program is provided in Table 1-1 below.

Table 1-1: Sampling Rate for FDOT Condition Surveys

	AC Pavements			PCC Paveme	nts
NI	n n		NI	1	n
N	Runway	Others	N	Runway	Others
1-4	1	1	1-3	1	1
5-10	2	1	4-6	2	1
11-15	3	2	7-10	3	2
16-30	5	3	11-15	4	2
31-40	7	4	16-20	5	3
41-50	8	5	21-30	7	3
<u>≥</u> 51	20% but ≤20	10% but ≤10	31-40	8	4
			41-50	10	5
			<u>></u> 51	20% but <u><</u> 20	10% but <u><</u> 10

Where

N = total number of sample units in Section

n = number of sample units to inspect

The sample units to inspect are determined by a systematic random sampling technique. This means that the locations are determined such that they are distributed evenly throughout the Section. In the case when nonrepresentive distresses are observed in the field, additional sample units were added.

The distress quantities and severity levels from the sample units are used to compute the PCI value for each Section. PCI values range from 0 to 100. As Figure 1-2 below indicates, MicroPAVER provides a rating scale that relates PCI to pavement condition. A PCI between 0 and 10 is considered 'Failed' pavement, and a PCI between 86 and 100 is considered 'Good' pavement, with five other conditions for PCI values between 11 and 85.

Figure 1-2: PCI Rating Scale

PCI	Condition Rating
86 – 100	Good
71 – 85 Satisfactory	
56 – 70	Fair
41 – 55	Poor
26 - 40	Very Poor
11 – 25	Serious
0 – 10	Failed

1.5 Definitions

<u>Aviation Office</u> - The Aviation Office is charged with responsibility for promoting the safe development of aviation to serve the people of the State of Florida. The Aviation Office Program Manager (AO-PM) has review and approval authority for each program task of the SAPMP.

<u>Base Course</u> - Base Course is a layer of manufactured material, usually crushed rock (aggregate) or stabilized material (asphalt or concrete or Florida Limerock), immediately beneath the surface course of a pavement, which provides support to the surface course.

<u>Branch</u> - A Branch designates pavements that have common usage and functionality, such as an entire runway, taxiway, or apron.

<u>Branch ID</u> - A short form identification for the pavement Branch. In this report, Branch includes the common designation for the item e.g. RW 18-36.

<u>Category</u> - The Category classifies the airport according to the type and volume of aircraft traffic, as follows:

- GA for general aviation or community airports;
- RL for regional relievers or small hubs;
- PR for primary (certified under Part 139 requirements).

<u>Critical PCI</u> - The PCI value considered to be the threshold for M&R decisions. PCI above the Critical generate economical activities expected to preserve and prolong acceptable condition. M&R for PCI values less than Critical make sense only for reasons of safety or to maintain a pavement in operable condition. A pavement section is expected to deteriorate very quickly once it reaches the Critical PCI and the unit cost of repair increases significantly.

<u>Distress Type</u> - A distress type is a defined visible defect in pavement evidenced by cracking, vertical displacement or deterioration of material. In PCI technology, 16 distinct distress types for asphalt surfaced and 15 for Portland Cement Concrete surfaced pavements have been described and rated according to the impact their presence has on pavement condition.

<u>Florida DOT (FDOT)</u> - Florida Department of Transportation was represented in this project by the Office of Aviation.

<u>Global M&R</u> - Global M&R is defined as activities applied to entire pavement Sections with the primary objective of slowing the rate of deterioration. These activities are primary for asphalt surfaced pavements, e.g. surface treatments.

<u>Localized M&R (Maintenance and Repair)</u> - Localized M&R is a temporizing activity performed on existing pavement to extend its serviceability and/or to improve rideability. Localized M&R can be applied either as a safety (stop-gap) measure or preventive measure. Common localized maintenance methods include crack sealing, joint sealing, and patching.

<u>Major M&R (e.g. Rehabilitation)</u> - Activities performed over the entire area of a pavement Section that are intended to restore and/or maintain serviceability. This includes asphalt overlays, milling and replacing asphalt pavement, reconstruction with asphalt, reconstruction with Portland Cement Concrete (PCC) pavements, and PCC overlays.

<u>MicroPAVER</u> - A commercially available software subsidized by FAA and agencies in the US Department of Defense developed to support engineered management of pavement assets using a condition based approach. This software has the functionality such that, if properly implemented, maintained, and operated, it meets the pavement management program requirements described by the FAA in Advisory Circular 150/5380-7A.

<u>Minimum Condition Level</u> - A threshold PCI value established by FDOT to represent the targeted minimum pavement condition that is desirable in the Florida Airport System. These values were established with consideration of pavement function and airport type. For instance, runways have higher minimum condition levels than aprons, and Primary airports have higher minimum condition levels than General Aviation airports.

<u>Network Definition</u> - A Network Definition is a Computer-Aided Drafting & Design (CADD) drawing which shows the airport pavement outline with Branch and Section boundaries. This drawing also includes the PCI sample units and is used to identify those sample units to be surveyed, i.e. the sampling plan. The Network Definition for the airport is in Appendix A along with a table of inventory data.

<u>Pavement Condition Index (PCI)</u> - The Pavement Condition Index is a number which represents the condition of a pavement segment at a specific point in time. It is based on visual identification and measurement of specific distress types commonly found in pavement which has been in service for a period of time. The definitions and procedures for determining the PCI are found in ASTM D 5340, published by ASTM International.

<u>Pavement Evaluation</u> - A systematic approach undertaken by trained and experienced personnel intended for determination of the condition, serviceability, and best corrective action for pavement. Techniques to standardize pavement evaluation include the Pavement Condition Index procedures.

<u>Pavement Management System (PMS)</u> - A Pavement Management System is a broad function that uses pavement evaluation and pavement performance trends as a basis for planning, programming, financing, and maintaining a pavement system.

<u>Pavement Surface Type</u> - The surface of pavement is identified as one of four types:

- AC for asphalt surface pavements;
- PCC for Portland Cement Concrete pavements;
- AAC for asphalt surface pavements that have had an asphalt overlay at some point in their construction history;
- APC for composite pavements, which consist of asphalt over Portland Cement Concrete pavement.
- PAC for composite pavements, which consist of Portland Cement Concrete over asphalt pavement.

<u>Rank</u> - Pavement rank in MicroPAVER determines the priority to be assigned to a pavement Section when developing an M&R plan. Pavement Sections are ranked as follows according to their use:

- P for Primary pavements, such as primary runways, primary taxiways, and primary aprons;
- S or Secondary pavements, such as secondary runways, secondary taxiways, and secondary aprons;
- T for Tertiary pavements such as "T" hangars and slightly used aprons.

<u>Reconstruction</u> - Reconstruction includes removal of existing pavement, preparation of subgrade, and construction of new pavement with new or recycled materials. Reconstruction is indicated when distress types evident at the surface indicate failure in the pavement structure or subgrade of a type, and to an extent, not correctable by less extensive construction.

<u>Rehabilitation</u> - Rehabilitation represents construction using existing pavement for a foundation. Rehabilitation most commonly consists of an overlay of existing pavement with a new asphalt or concrete surface. Recently, technology has expanded the options to include recycling of existing pavement and incorporating engineering fabrics or thin layers of elasticized materials to retard reflection of distress types through the new surface.

<u>Sample Unit</u> - Uniformly sized portions of a Section as defined in ASTM D 5340. Sample units are a means to reduce the total amount of pavement actually surveyed using statistics to select and survey enough area to provide a representative measure of Section PCI. Sample Unit sizes are $5,000 \pm 2,000$ square feet for AC-surfaced pavements and 20 ± 8 slabs for PCC-surfaced pavements.

<u>Section</u> - Sections subdivide Branches into portions of similar pavement. Sections are prescribed by pavement structure, age, condition, and use. Sections are identified on the airport Network Definition. They are the smallest unit used for determining M&R requirements based on condition.

<u>Section ID</u> - A short form identification for the pavement Section that maintains the original AirPAV identification where 100 series through 3000 series Sections are taxiways, 4000 and 5000 series Sections are aprons (the 5000 series represent run-up aprons and turnarounds), and 6000 series Sections are runways.

<u>Statewide Airfield Pavement Management Program (SAPMP)</u> – The Statewide Airfield Pavement Management Program is a program implemented in 1992 by the Florida Department of Transportation to plan, schedule, and design the maintenance and rehabilitation activities

necessary for the airfield pavement on Florida's public airports to allow the airports to operate efficiently, economically, and without excessive down time.

<u>System Inventory</u> - A System Inventory is a Computer-Aided Drafting & Design (CADD) drawing which shows the airport pavement outline and identifies airfield construction activities since the last inspection. The System Inventory for the airport is included in Appendix A.

<u>Use</u> - In MicroPAVER, Use is the term for the function of the pavement area. This is either Runway, Taxiway, or Apron for purposes of the FDOT Statewide Aviation Pavement Management System.

2. NETWORK DEFINITION AND PAVEMENT INVENTORY

Arcadia Municipal Airport (X06) is operated by the City of Arcadia in DeSoto County. Arcadia Municipal Airport consists of a single paved runway; RW 5-23 at 75-ft wide by 3,700-ft long and a turf runway RW 13-31, which is 140-ft wide by 2,780-ft long. X06 is serviced by a parallel taxiway along the runway and taxiway connectors providing access to and from the apron and hangar facilities.

It is important to note that the aforementioned runway data in addition to the remaining airfield pavement facilities geometric dimensions may vary slightly from the geometry used in the condition and M&R analysis based on field measurements.

This airport is designted as a General Aviation airport and is located in District 1 of the Florida Department of Transportation.

2.1 Network Definition

The pavements within the network are defined in MicroPAVER in terms of manageable units that help to organize the data into similar groups. An organizational hierarchy is used to establish these units.

2.1.1 Branch Section Identification

The airport pavement network is subdivided into separate Branches (runways, taxiways, or aprons) that have distinctly different uses. Branches are then further divided into Sections with similar pavement construction and performance that may share other common attributes.

Sections are manageable units used to organize the data collection and are treated individually during the rehabilitation planning stage. A pavement rank, consisting of primary, secondary, and tertiary levels, is assigned to each Section based on their level and type of use. The pavement rankings that were designated for each Section in the previous SAPMP update were again used for this update.

As discussed in Section 1.4.3 "Pavement Inspection Methodology for the SAPMP", the sections are sub-divided into sample units, which are the smallest subdivision in a pavement network, only for the purpose of conducting the pavement condition survey.

2.1.2 System Inventory and Network Definition Update

The System Inventory and Network Definition drawings are used to identify changes in the network since the most recent update from the 2006/2008 inspections and also to plan the field inspection activities for the 2011 survey. Prior to the field inspection process, the System Inventory drawing was updated from the previous inspection with notes indicating recent construction projects on the various Sections of pavement throughout the airfield. This System Inventory drawing is used to update the Network Definition drawing.

The Network Definition drawing shows the airport pavement outline with Branch and Section boundaries. This drawing also includes the PCI sample units and is used to identify those sample units to be surveyed, i.e. the sampling plan. The previous airport configuration and history was compared with the current airport configuration, and the existing network branch, section and

sample unit designations were revised to match the current configuration. This drawing serves not only as a primary guide for the airfield inspectors but also as an important historical record.

The updated System Inventory and Network Definition drawings for Arcadia Municipal Airport are provided in Appendix A. Table 2-1 below lists the recent construction projects at the airport.

Table 2-1: Construction Since Last Inspection & Anticipated Construction Activity

Construction Year	Location	Work Type / Pavement Section
	No recent activity inform	nation provided

As indicated by the airport, no recent construction projects have occurred on the airfield pavement since the previous update.

2.2 Pavement Inventory

The detailed pavement inventory was updated to reflect the network definition update and field inspection results.

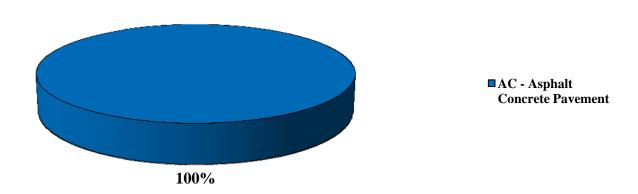

The total airfield pavement area in 2011 at Arcadia Municipal Airport is 571,965 square feet. The breakdown of pavement area for each pavement use is provided in Table 2-2.

Table 2-2: Pavement Area by Pavement Use

Use	Area (ft²)	% of Total Area
Runway	277,500	49%
Taxiway	209,030	37%
Apron	85,435	15%
All (Weighted)	571,965	100%

Figure 2-1 presents the breakdown of the pavement area at Arcadia Municipal Airport by surface type.

Figure 2-1: Pavement Area by Surface Type

Details of pavement Branch and Section information including Branch name (which indicates pavement use), Branch ID, Section ID, section area, rank, surface type, last construction date, number of samples inspected, and number of samples in each Section are given in Table 2-3 below. A more detailed Pavement Inventory Table may be found in Appendix A of this report.

Table 2-3: Branch and Section Inventory

Branch Name	Branch ID	Section ID	True Area (ft²)	Section Rank	Surface Type	Last Const. Date	Total Samples Inspected	Sample Units in Section
Apron	AP	4105	72,000	P	AC	1/1/1985	2	15
Apron	AP	4110	13,435	P	AC	1/1/1987	1	4
Runway 5-23	RW 5-23	6105	277,500	P	AC	1/1/1985	16	74
Taxiway	TW	105	158,600	P	AC	1/2/1985	5	39
Taxiway	TW	110	7,820	P	AC	1/3/1985	1	2
Taxiway	TW	115	4,310	P	AC	1/4/1985	1	1
Taxiway Hangar	TW HANGAR	210	12,500	T	AC	1/1/2000	1	5
Taxiway Hangar	TW HANGAR	220	7,050	Т	AC	1/2/2000	1	2
Taxiway Hangar	TW HANGAR	230	18,750	T	AC	1/3/2000	1	8

Note: If a new construction, then survey date = last construction date and PCI is set to 100 by MicroPAVER.

Sections not surveyed due to reasons such as re-sectioning, no escort, not accessible at the time of survey.

3. PAVEMENT CONDITION

Pavement conditions were inspected in accordance with the methods outlined in FAA AC 150/5380-6B and ASTM D 5340-04 "Standard Practice for Airport Pavement Condition Index Surveys." These procedures define distress type, severity and quantity for sampling areas within each section to determine the Pavement Condition Index (PCI).

3.1 Inspection Methodology

A PCI survey is performed by measuring the amount and severity of pavement distresses, which are caused by traffic load, climate, and other factors, observed within a sample unit. This data is imported into MicroPAVER, which calculates PCI values for the pavement sections. Table 3-1 below lists the pavement distress types and related causes for asphalt concrete (AC).

Table 3-1: Pavement Distresses for Asphalt Concrete Surfaces

Code	Distress	Mechanism		
41	Alligator Cracking	Load		
42	Bleeding	Construction Quality / Mix Design		
43	Block Cracking	Climate / Age		
44	Corrugation	Load / Construction Quality		
45	Depression	Subgrade Quality		
46	Jet Blast	Aircraft		
47	Joint Reflection - Cracking	Climate / Prior Pavement		
48	Longitudinal/Transverse Cracking	Climate / Age		
49	Oil Spillage	Aircraft / Vehicle		
50	Patching	Utility / Pavement Repair		
51	Polished Aggregate	Load		
52	Weathering/Raveling	Climate / Load		
53	Rutting	Load		
54	Shoving	Pavement Growth		
55	Slippage Cracking	Load / Pavement Bond		
56	Swelling	Climate / Subgrade Quality		
Source: U.S	. Army CERL, FDOT Airfield Inspecti	ion Reference Manual		

Prior to conducting the inspections, Global Positioning System (GPS) coordinates were recorded using CADD at the centroid of each sample unit. The centroid is usually the geometric center of the area, but in cases where sample units are irregular in shape, this is the center of mass. These data are presented in a table on the updated Network Definition Map in Appendix A of this report.

Pavement condition inspections at Arcadia Municipal Airport were performed in February 2011. Data were recorded in the field in accordance with FAA Advisory Circular 150/5380-6B "Guidelines and Procedures for Maintenance of Airport Pavements" and ASTM D 5340 "Standard Test Method for Airport Pavement Condition Index Surveys" (2004).

After the completion of data collection, the data was imported into MicroPAVER, and PCI values were calculated for the pavement sections.

3.2 Pavement Condition Index Results

According to the 2011 survey, the overall area-weighted PCI at Arcadia Municipal Airport is 61, representing a Fair overall network condition.

Overall the airport exhibited pavement distresses associated with climate cycling and the age of the material. The Asphalt Pavement Distresses include; weathering, raveling, block cracking, longitudinal and transverse cracking of which are expected of the pavement due to its age and construction history.

Runway 5-23 showed common distresses of weathering and raveling, longitudinal cracking, and occasional block cracking. The taxiway to the hangars and the hanger access pavement suffered medium to high severity block cracking with weathering and raveling. The pavements' dark color is evidence of past seal coat applications in spite of degrading block cracking distresses. The condition analysis of the runway resulted in a PCI of 58 with a condition rating of 'Fair'. Runway 5-23's PCI of 58 is below both the FAA and FDOT recommended minimum PCI values.

The taxiway access to the hangars exhibited medium to high severity block cracking, longitudinal/transverse cracking, and weathering/raveling. It appears that the pavement sections have been seal coated in the past to retard the degradation of the pavement. However the curling of the pavement around the cracks has attributed to rideability issues. The condition analysis has resulted in a PCI of 31 with a condition rating of 'Very Poor' of which is below both the FDOT and FAA recommended minimum PCI values.

Appendix B contains a table and a Condition Map which depicts the PCI results by Section, and Appendix C contains a table of PCI results by Branch. Appendix I includes detailed distress data generated by MicroPAVER for each inspected sample unit.

Figure 3-1 provides the PCI distribution by rating category for Arcadia Municipal Airport.

Satisfactory 29%

Fair 63%

Figure 3-1: Network PCI Distribution by Rating Category

Figure 3-1a: Condition Rating Summary

Condition Rating	Total Area (ft²)	Percent
Good	0	0%
Satisfactory	166,420	29%
Fair	362,935	63%
Poor	4,310	1%
Very Poor	38,300	7%
Serious	0	0%
Failed	0	0%

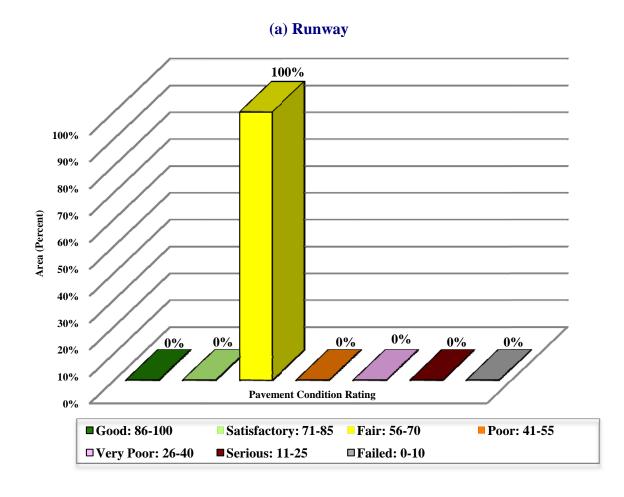
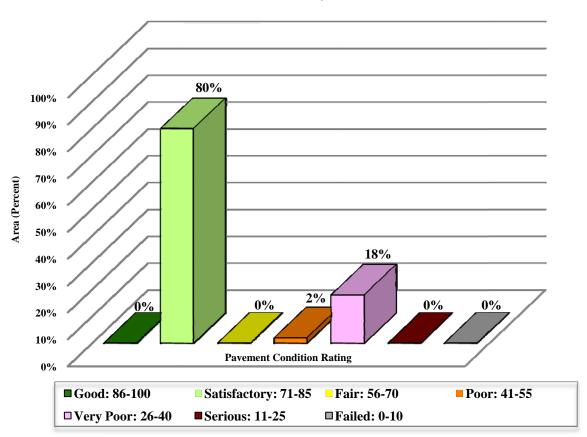

Approximately 92% of the network is in Satisfactory and Fair condition while 8% of the network is in Poor and Very Poor condition. Table 3-3 illustrates the area-weighted PCI computed individually for each pavement use.

Table 3-2: Condition by Pavement Use


Use	Area-Weighted PCI	Condition Rating		
Runway	58	Fair		
Taxiway	63	Fair		
Apron	65	Fair		
All (Weighted)	61	Fair		

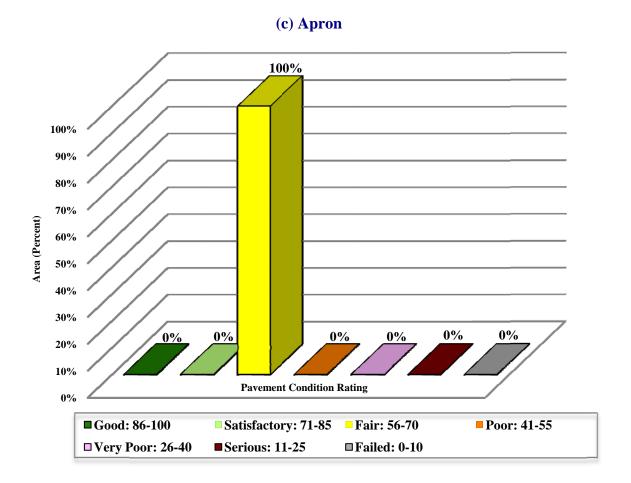

Figure 3-2 presents the breakdown of PCI by range for each pavement use.

Figure 3-2: Percentage of Pavement Area within Each PCI Range by Pavement Use

(b) Taxiway

4. PAVEMENT CONDITION PREDICTION

Performance prediction models or deterioration curves for PCI were used to develop a condition forecast. The performance models were developed for combinations of variables such as pavement use (runway, taxiway or apron), surface type (AC or PCC) and airport category (GA, RL, or PR). Figure 4-1 illustrates the predicted performance of pavements at Arcadia Municipal Airport based on current condition, age since last construction and the deterioration model appropriate for the type of pavement. The figure presents the forecast for each pavement use and displays the FDOT minimum service level for General Aviation (GA) airports.

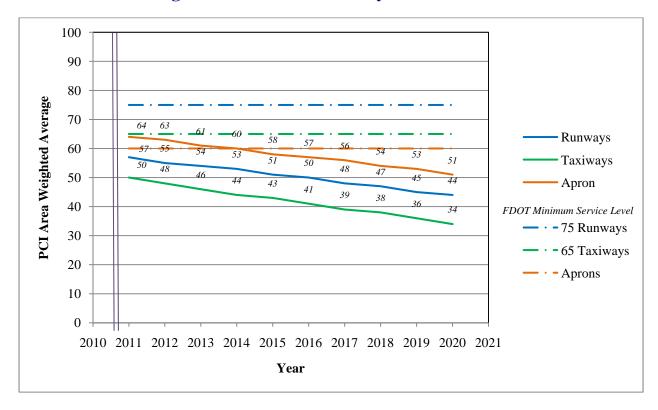


Figure 4-1: Predicted PCI by Pavement Use

Appendix D presents the tabular summary of the predicted Section PCI for each year from 2011 to 2020.

5. MAINTENANCE POLICIES AND COSTS

5.1 Policies

Maintenance and rehabilitation (M&R) policies are sets of rules used to develop repair recommendations for distresses encountered during the visual inspections.

Maintenance refers to repair-type activities that are applied to specific distress types on the pavement. These activities are preventative and/or corrective in nature and are recommended to help achieve the performance goal.

Table 5-1 provides the list of the maintenance activities used in MicroPAVER to treat specific distress types. MicroPAVER applies repairs to these distresses and adjusts the PCI based on specific rules. These repairs are used only in the first year of an analysis.

Rehabilitation is warranted when the pavement condition decreases below a critical point such that the deterioration is extensive or the rate of deterioration is so great that routine maintenance is no longer cost-efficient. This critical point is called "Critical PCI." The critical PCI levels for different pavement and branch types established in the previous SAPMP update were used in this update for the development of the M&R plan for the airport. Sections above critical PCI levels receive routine maintenances while pavements predicted to deteriorate below their respective critical PCI level during the analysis period will be identified for Major M&R. Table 5-2 gives the critical PCI levels for General Aviation Airports.

The maintenance rehabilitation policy and activity costs have been updated based on the study of readily available construction cost data at the time of this study. The costs depicted in this report are intended for planning purposes.

Table 5-1: Routine Maintenance Activities for Airfield Pavements

Surface	Distress	Severity*	Work Type	Code	Work Unit
	Alligator Crack	M, H	Patching - AC Deep	PA-AD	SqFt
AC	Bleeding	N/A	No Localized M&R	NONE	N/A
	Block Crack	M, H	Crack Sealing – AC	CS-AC	SqFt
	Corrugation	L, M, H	Patching - AC Deep	PA-AD	SqFt
	Depression	M, H	Patching - AC Deep	PA-AD	SqFt
	Jet Blast	N/A	Patching - AC Deep	PA-AD	SqFt
	Joint Ref. Crack	M, H	Crack Sealing – AC	CS-AC	Ft
	L & T Crack	M, H	Crack Sealing – AC	CS-AC	Ft
	Oil Spillage	N/A	Patching - AC Shallow	PA-AS	SqFt
AC	Patching	M, H	Patching - AC Deep	PA-AD	SqFt
	Polished Agg.	N/A	No Localized M&R	NONE	N/A
	Daviding and	L	Surface Sealing - Rejuvenating	SS-RE	SqFt
	Raveling and Weathering	M	Surface Seal - Coal Tar	SS-CT	SqFt
	weathering	Н	Microsurfacing	MI-AC	SqFt
	Rutting	M, H	Patching - AC Deep	PA-AD	SqFt
	Shoving	M, H	Grinding (Localized)	GR-LL	SqFt
	Slippage Crack	N/A	Patching - AC Shallow	PA-AS	SqFt
	Swelling	M, H	Patching - AC Deep	PA-AD	SqFt
	Blow-Up	L, M, H	Patching - PCC Full Depth	PA-PF	SqFt
	Corner Break	M, H	Patching - PCC Full Depth	PA-PF	SqFt
	Linear Crack	M, H	Crack Sealing – PCC	CS-PC	Ft
	Durability Crack	Н	Slab Replacement – PCC	SL-PC	SqFt
	Durability Crack	M	Patching - PCC Full Depth	PA-PF	SqFt
	Jt. Seal Damage	M, H	Joint Seal (Localized)	JS-LC	Ft
	Small Patch	M, H	Patching - PCC Partial Depth	PA-PP	SqFt
PCC	Large Patch	M, H	Patching - PCC Full Depth	PA-PF	SqFt
PCC	Popouts	N/A	No Localized M&R	NONE	N/A
	Pumping	N/A	No Localized M&R	NONE	N/A
	Scaling	Н	Slab Replacement – PCC	SL-PC	SqFt
	Faulting	M, H	Grinding (Localized)	GR-PP	Ft
	Shattered Slab	M, H	Slab Replacement – PCC	SL-PC	SqFt
	Shrinkage Crack	N/A	No Localized M&R	NONE	N/A
	Joint Spall	M, H	Patching - PCC Partial Depth	PA-PP	SqFt
	Corner Spall	M, H	Patching - PCC Partial Depth	PA-PP	SqFt

^{*}L = Low, M = Medium, H = High

Table 5-2: Critical PCI for General Aviation Airports

Use	Critical PCI		
Runway	65		
Taxiway	65		
Apron	65		

It should be noted that critical PCI is not the same as Minimum PCI or Minimum Condition. The Minimum PCI is a value set by the user so pavement sections are rehabilitated before they fall below the set minimum. Table 5-3 gives the targeted, or desired, Minimum PCI values for runways, taxiways, and aprons of General Aviation Airports.

Table 5-3: FDOT Minimum Service Level PCI for General Aviation Airports

Minimum PCI						
Runway Taxiway Apron						
75 65 60						

Typical Major M&R activities range from overlays to reconstruction. Based on the critical PCI values in Table 5-2 the PCI trigger range when the likely activity would be a mill and resurface was 40 to 79 and reconstruction at a PCI of 39 or lower. One important concept of pavement management systems is that it is cost effective to maintain pavements that are already in good condition rather than wait for them to get worse and require more expensive rehabilitation.

Crack sealing and full-depth patching are the M&R activities recommended to repair pavements with PCI values between 80 and 90. MicroPAVER considers these as preventative M&R with their primary objective being to slow the rate of pavement deterioration. While the trigger PCI for mill and overlay has been set to 55, MicroPAVER also assigns mill and overlay to sections with a PCI greater than 55 if they exhibit some structural distress. Table 5-4 summarizes the M&R activities for General Aviation Airports based on PCI value.

Table 5-4: M&R Activities for General Aviation Airports

	Activity	PCI Range
Maintenance	Crack Sealing and Full-Depth Patching	80 and 90
Rehabilitation	Mill and Overlay (AC) or Concrete Pavement Restoration (PCC)	40 to 79
	Reconstruction	39 and less

5.2 Unit Costs

FDOT cost databases for airports and highway pavement maintenance and rehabilitation were updated from the previous SAPMP study based on current construction cost trends in order to determine meaningful costs for the program. Table 5-5 presents the unit costs summary.

5.3 M&R Activities

FDOT recognizes that although Mill and Overlay work is recommended for asphalt pavements within a PCI range from 40 to 79, it is conceivable that airports may not have adequate funding to perform this type of rehabilitation. Microsurfacing treatment is a maintenance/rehabilitation measure that can be used in lieu of asphalt pavement mill and overlay; however it should be understood that this measure is intended for short term pavement life extension. While the cost of microsurfacing is significantly lower than that of pavement mill and overlay, it is not intended to be a full rehabilitative measure for long term benefit.

Table 5-5: Maintenance Unit Costs for FDOT

Code	Name	Cost	Unit
GR-LL	Grinding (Localized for AC)	\$2.10	SqFt
PA-AL	Patching – AC Leveling	\$2.30	SqFt
PA-AS	Patching – AC Shallow	\$2.90	SqFt
PA-PF	Patching – PCC Full Depth	\$38.11	SqFt
PA-PP	Patching – PCC Partial Depth	\$19.06	SqFt
SL-PC	Slab Replacement – PCC	\$39.11	SqFt
CS-PC	Crack Sealing – PCC	\$4.24	Ft
UN-PC	Undersealing – PCC	\$3.40	Ft
CS-AC	Crack Sealing – AC	\$2.25	Ft
GR-PP	Grinding (Localized for PCC)	\$22.51	Ft
JS-LC	Joint Seal (Localized)	\$2.00	Ft
SH-LE	Shoulder Leveling	\$2.81	Ft
JS-SI	Joint Seal – Silicon	\$2.81	Ft
PA-AD	Patching – AC Deep	\$4.90	SqFt
OL-AT	Overlay – AC Thin	\$2.80	SqFt
SS-CT	Surface Seal – Coal Tar	\$0.40	SqFt
SS-FS	Surface Seal – Fog Seal	\$0.40	SqFt
SS-RE	Surface Seal – Rejuvenating	\$0.40	SqFt
ST-SB	Surface Treatment – Single Bitum.	\$0.30	SqFt
ST-SS	Surface Treatment – Slurry Seal	\$0.55	SqFt
ST-ST	Surface Treatment – Sand Tar	\$0.28	SqFt
MI-AC	Microsurfacing - AC	\$0.65	SqFt

The improvement in condition due to maintenance actions applied to specific distresses is only performed when an inspection was performed recently and only in the first year of the M&R analysis. In subsequent years, MicroPAVER calculates M&R costs based on expected unit costs for pavements in a range of PCIs. That is, for low PCI, it is expected that the repair would be significant (e.g. reconstruction) and therefore very costly.

Using available unit cost data, the Major M&R Cost by Condition table was set up as shown in Table 5-6. The cost assigned to each range of PCI is based on a Transportation Cost Report provided by Office of Planning Policy of FDOT where the unit costs of reconstruction and resurfacing of airfield pavements were included. These costs were then assigned to the appropriate PCI range to arrive at a cost per square foot necessary to restore pavements at that PCI level to new condition, i.e. a PCI of 100.

Table 5-6: M&R Activities and Unit Costs by Condition for General Aviation Airports

	Activity	PCI Trigger	Cost/SqFt
Maintenance	Crack Sealing and Full-Depth Patching	90	\$0.06
Wantenance	Crack Scannig and I un-Depth I atching	80	\$0.24
Rehabilitation		70	\$3.00
	Mill and Overlay (AC) or Concrete Pavement Restoration (PCC)	60	\$3.42
		50	\$6.29
		40	\$6.29
	Reconstruction	30	\$13.62
	Reconstruction	20	\$13.62

A 3% inflation rate per year was applied to the unit costs during the M&R analysis.

6. PAVEMENT REHABILITATION NEEDS ANALYSIS

Maintenance and Rehabilitation (M&R) analyses were performed after the condition data were calculated and MicroPAVER was customized with the maintenance policies and cost settings described in the previous section.

The objective of the M&R analysis is to observe the effect of different fiscal scenarios on the network condition, over a period of ten years, starting from 2011. The analysis was conducted using an unlimited budget. An unlimited budget allows all M&R needs to be identified along with the associated cost regardless of priority.

Table 6-1 presents the M&R list of immediate needs for Major M&R, i.e. Year 1 of the forecast. The importance of this listing is that it points out the major activities triggered by the current condition of the pavements.

Table 6-1: Summary of Immediate Major M&R Needs Option No. 1

Branch Name	Section ID	Surface Type	Section Area (ft²)	Major M&R Costs*	PCI Before M&R	M&R Activity	PCI After Maint.
Apron	4110	AC	13,435	\$42,279.98	61	Mill and Overlay	100
Runway 5-23	6105	AC	277,500	\$1,187,978.06	57	Mill and Overlay	100
Taxiway	115	AC	4,310	\$27,109.90	46	Mill and Overlay	100
Taxiway Hangar	210	AC	12,500	\$170,250.06	28	Reconstruction	100
Taxiway Hangar	220	AC	7,050	\$49,512.16	39	Reconstruction	100
Taxiway Hangar	230	AC	18,750	\$255,375.08	28	Reconstruction	100
			Total	\$1,732,505.24	43		100

^{*} Costs are adjusted for inflation.

FDOT recognizes that the costs attributed to the aforementioned 'Major Activity' of performing a pavement 'Mill and Overlay' may conflict with budgetary constraints. Table 6-2 presents an alternative minor rehabilitative activity to the mid-range performing pavements. The alternative activity is performing a 'Microsurfacing/Slurry Seal' to the pavement to retard the degradation of the facility until funding is available for a 'Mill and Overlay' activity.

Table 6-2: Summary of Immediate Major M&R Needs Option No. 2

Branch Name	Section ID	Surface Type	Section Area (ft²)	Major M&R Costs*	PCI Before M&R	M&R Activity	PCI After Maint.
Apron	4110	AC	13,435	\$8,732.75	61	Microsurfacing	100
Runway 5-23	6105	AC	277,500	\$180,375.00	57	Microsurfacing	100
Taxiway	115	AC	4,310	\$2,801.50	46	Microsurfacing	100
Taxiway Hangar	210	AC	12,500	\$170,250.06	28	Reconstruction	100
Taxiway Hangar	220	AC	7,050	\$49,512.16	39	Reconstruction	100
Taxiway Hangar	230	AC	18,750	\$255,375.08	28	Reconstruction	100
			Total	\$667,046.55	43		100

^{*} Costs are adjusted for inflation.

In addition to the immediate Major M&R needs, maintenance activities for pavement areas above critical PCI have been recommended by MicroPAVER for Year 1 and are shown in Table 6-3 below. The costs provided in Table 5-5 were used to calculate the costs associated with this work, which is intended to treat specific distress types. A more detailed table is provided in Appendix E.

Table 6-3: Summary of Year 1 Maintenance Activities

Branch Name	Branch ID	Section ID	Distress Description	Distress Severity	Work Description	Work Quantity	Work Unit	Unit Cost	Work Cost
Apron	AP	4105	WEATH/RAVEL	L	Surface Seal - Rejuvenating	46,799.60	SqFt	\$0.40	\$18,720.00
Taxiway	TW	105	WEATH/RAVEL	L	Surface Seal - Rejuvenating	72,956.10	SqFt	\$0.40	\$29,182.69
Taxiway	TW	110	WEATH/RAVEL	L	Surface Seal - Rejuvenating	2,083.80	SqFt	\$0.40	\$833.52
								Total =	\$48,736.21

The 10 year forecast results are shown in Figure 6-1, illustrating the effect on pavement condition (PCI) of doing no maintenance versus having unlimited funds and performing all M&R actions based on the policies.

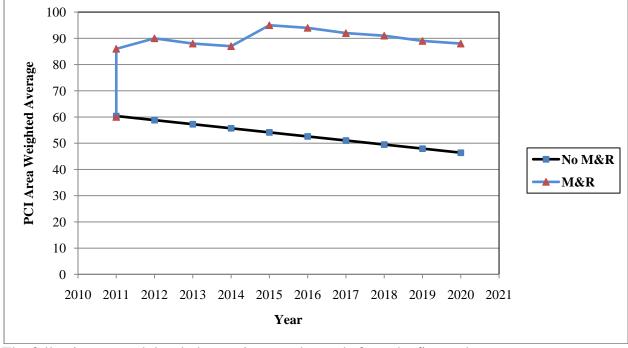


Figure 6-1: Budget Scenario Analysis

The following network level observations can be made from the figure above:

- The PCI will deteriorate from 61 in 2011 to 46 in ten years if no M&R activities are performed.
- The PCI will remain at or above 88 through the 10-year analysis period under the unlimited budget scenario. A 2020 PCI of 88 with this scenario is 42 PCI points higher than a "No M&R" scenario. The total cost for Major M&R over this 10-year period is about \$2.4 million.

7. MAINTENANCE AND REHABILITATION PLAN

The M&R analysis results include activities that likely exceed a typical annual budget level. These activities would need to be evaluated for feasibility and desirability based on the airport's future plans. In an effort to identify appropriate budget levels, the 10 year M&R analysis was evaluated to determine levels needed to address several specific areas: preventive maintenance, major activities for pavements in poor condition (Major M&R for PCIs less than Critical), and activities that would be desirable to preserve good pavement conditions where they exist (Major M&R for PCI greater than or equal to Critical).

Table 7-1 provides the summary results under the critical PCI unlimited funding scenario.

Table 7-1: M&R Costs under Unlimited Funding Scenario

Year	Preventative	Major M&R	Total Year Cost
2011	\$48,736.21	\$1,732,505.23	\$1,781,241.44
2012	\$35,343.41	\$172,644.59	\$207,988.00
2013	\$40,068.62	\$0.00	\$40,068.62
2014	\$45,020.31	\$0.00	\$45,020.31
2015	\$1,443.47	\$484,783.46	\$486,226.93
2016	\$2,030.63	\$0.00	\$2,030.63
2017	\$2,658.22	\$0.00	\$2,658.22
2018	\$4,253.02	\$0.00	\$4,253.02
2019	\$12,690.86	\$0.00	\$12,690.86
2020	\$19,229.94	\$0.00	\$19,229.94
Total	\$211,474.69	\$2,389,933.28	\$2,601,407.97

Note: Costs are adjusted for inflation.

Approximately 72% of the total Major M&R cost is required in the first year (2011). According to the 2011 inspections, the following pavement sections were in immediate need of Major M&R Activity:

- **Apron** Asphalt Pavement mill and overlay activity per the FAA P-401 Specification.
- **Runway 5-23** Asphalt Pavement mill and overlay activity per the FAA P-401 Specification.
- **Taxiway** Asphalt Pavement mill and overlay activity per the FAA P-401 Specification.
- **Taxiway Hangar** Asphalt Pavement reconstruction activity per the FAA P-401 Specification.

The unlimited budget scenario provides the basis for estimating the total repair cost.

Appendix F provides details of M&R plan by year under the unlimited funding scenario, and the map of the 10-year M&R plan is provided in Appendix G. It is important to understand that the SAPMP is a network level tool and the M&R costs provided in this report are only for planning purposes.

8. VISUAL AIDS

8.1 System Inventory and Network Definition Drawings

The System Inventory and Network Definition CADD drawings, which show the airport pavement outline with Branch and Section boundaries and identify changes in the network pavement since the last inspection and the sampling plan, respectively, are included in Appendix A of this report.

8.2 Condition Map

A Condition Map that has been prepared based on data linked to the airport's shape file is included in Appendix B. The Condition Map graphically show the inventory and condition of the airport via color coding shown on the shape file. The coding provides a visual representation that illustrates the PCIs for each pavement section.

8.3 10-Year M&R Map

A 10-Year M&R Map that shows the summary of the M&R plan is attached in Appendix G.

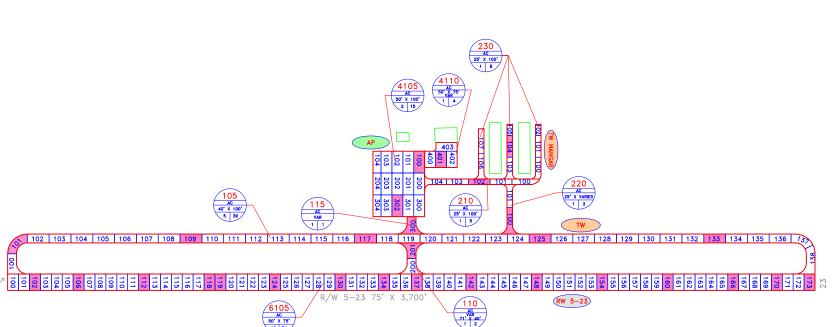
8.4 Photographs

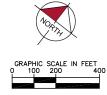
Selected digital photographs taken during the pavement inspection are provided in Appendix H to provide visual support to special pavement conditions or distress observed during the inspection of the airport.

9. RECOMMENDATIONS

Pavement condition inspections were performed at Arcadia Municipal Airport, and a 10-year M&R plan was developed based on the unlimited funding scenario.


The following recommendations were made based on the 2011 condition inspection and M&R analysis results:


- **Apron** Asphalt Pavement mill and overlay activity per FAA P-401 Specification.
- **Runway 5-23** Asphalt Pavement mill and overlay activity per FAA P-401 Specification.
- **Taxiway** Asphalt Pavement mill and overlay activity per FAA P-401 Specification.
- **Taxiway Hangar** Asphalt Pavement reconstruction activity per FAA P-401 Specification.


Further evaluation of these features is necessary in order to develop repair plans and timing for future budgets since these needs cannot be addressed with typical annual expenditures.

APPENDIX A

NETWORK DEFINITION MAP SYSTEM INVENTORY MAP PAVEMENT INVENTORY TABLE WORK HISTORY REPORT

LOCATION	SECTION	SAMPLE	LONGITUDE	LATITUDE
RW 5-23	6105	102	-81.8414331	27.19271503
RW 5-23	6105	106	-81.84094556	27.19305064
RW 5-23	6105	112	-81.84021426	27.19355405
RW 5-23	6105	118	-81.83948294	27.19405746
RW 5-23	6105	119	-81.83936105	27.19414137
RW 5-23	6105	124	-81.83875162	27.19456087
RW 5-23	6105	130	-81.83802029	27.19506427
RW 5-23	6105	134	-81.83753274	27.19539987
RW 5-23	6105	137	-81.83716707	27.19565157
RW 5-23	6105	142	-81.83655762	27.19607107
RW 5-23	6105	148	-81.83582627	27.19657446
RW 5-23	6105	154	-81.83509491	27.19707784
RW 5-23	6105	160	-81.83436355	27.19758123
RW 5-23	6105	166	-81.83363219	27.19808461
AP	4110	401	-81.83795203	27.197064
AP	4105	100	-81.83817235	27.19686895
AP	4105	302	-81.83804082	27.19626518
TW HANGAR	230	104	-81.83729671	27.19772336
TW HANGAR	220	100	-81.83661591	27.19693253
TW HANGAR	210	102	-81.83733306	27.19713422
TW	115	300	-81.83768545	27.19614552
TW	110	201	-81.8374964	27.19592602
TW	105	101	-81.84195513	27.19296209
TW	105	109	-81.84006546	27.1943508
TW	105	117	-81.83811526	27.19569321
TW	105	125	-81.83616501	27.1970356
TW	105	133	-81.83421471	27.19837796

LEGEND

RW 13-3) - TYPICAL RUNWAY BRANCH ID

TW A TYPICAL TAXIWAY BRANCH ID

TYPICAL APRON BRANCH ID

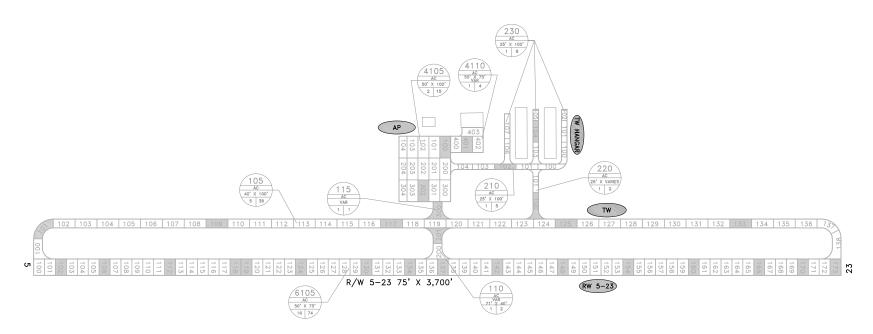
SECTION NUMBER
PAVEMENT TYPE
TYPICAL SAMPLE UNIT INFORMATION
FLEXIBLE (AC) PAVEMENT LENGTH & WIDTH
RIGID (PCC) PAVEMENT NO. OF SLABS AND SLAB SIZE

- NUMBER OF SAMPLE UNITS IN SECTION
- NUMBER OF SAMPLE UNITS TO BE INSPECTED

INSPECTED SAMPLE UNITS. GPS COORDINATES ARE AT THE CENTROID OF THE SAMPLE UNIT.

TOTAL SAMPLES INSPECTED = 29

RUNWAY LENGTHS DEPICTED IN THIS DRAWING ARE FOR PAVEMENT MANAGEMENT PURPOSES ONLY AND MAY NOT MATCH PUBLISHED RUNWAY LENGTHS.


NUMBER	DATE		REVISIONS						
DESIGNED:	ELT	DRAWN:	ALB	CHECKED:	DRB	DATE:			
K: \BF6_Aviation\14217	IC \WFB_ANDSON\142779005\CACO\FLANDSEETS\DOE\100875\COC-DOESTS\COC-DOE-CETIMITOR.deg PLOTTED: July 11, 2011 - 2:00 PM, 8Y. Stanford, Rex								

CONSTRUCTION SINCE LAST INSPECTION & ANTICIPATED CONSTRUCTION ACTIVITY

WANTON ALEB CONCINCOLLOWATE									
CONSTRUCTION LOCATION WORK TYPE / PAVEMENT SECTION YEAR									
NO INFORMATION PROVIDED									

LEGEND

PROJECTS YEAR 2006
PROJECTS YEAR 2007
PROJECTS YEAR 2008
PROJECTS YEAR 2009
PROJECTS YEAR 2010
PROJECTS YEAR 2011
PROJECTS YEAR 2011
PROJECTS YEAR 2013
PROJECTS YEAR 2014
PROJECTS YEAR 2015
PROJECTS YEAR 2016
PROJECTS YEAR 2016
PROJECTS YEAR 2017

RUNWAY LENGTHS DEPICTED IN THIS DRAWING ARE FOR PAVEMENT MANAGEMENT PURPOSES ONLY AND MAY NOT MATCH PUBLISHED RUNWAY LENGTHS.

K:\WF8_Aviation\142179	1005\CACO\PLANSHEETS\X	D6\EXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		PLOTTED: July 11, 2011 - 2:03 PM, BY: Steelard, Rex					
DESIGNED:	ELT	DRAWN:	ALB	CHECKED:	DRB	DATE:			
NUMBER	DATE		REVISIONS						

SYSTEM INVENTORY MAP

ARCADIA MUNICIPAL AIRPORT
DESOTO COUNTY, FLORIDA

FLORIDA DEPARTMENT OF TRANSPORTATION - AVIATION OFFICE

Table A-1: Pavement Inventory

Branch Name	Branch ID	Branch Use	Section ID	Length (ft)	Width (ft)	True Area (ft²)	Section Rank	Surface Type	Last Const. Date	Last Insp. Date	Total Samples
Apron	AP	APRON	4105	300	240	72,000	P	AC	1/1/1985	2/2/2011	15
Apron	AP	APRON	4110	150	75	13,435	P	AC	1/1/1987	2/2/2011	4
Runway 5-23	RW 5-23	RUNWAY	6105	3,700	75	277,500	P	AC	1/1/1985	2/2/2011	74
Taxiway	TW	TAXIWAY	105	3,965	40	158,600	P	AC	1/1/1985	2/2/2011	39
Taxiway	TW	TAXIWAY	110	142	40	7,820	P	AC	1/1/1985	2/2/2011	2
Taxiway	TW	TAXIWAY	115	80	40	4,310	P	AC	1/1/1985	2/2/2011	1
Taxiway Hangar	TW HANGAR	TAXIWAY	210	500	25	12,500	T	AC	1/1/2000	2/2/2011	5
Taxiway Hangar	TW HANGAR	TAXIWAY	220	235	30	7,050	T	AC	1/1/2000	2/2/2011	2
Taxiway Hangar	TW HANGAR	TAXIWAY	230	750	25	18,750	Т	AC	1/1/2000	2/2/2011	8

Note: If a new construction, then survey date = last construction date and PCI is set to 100 by MicroPAVER.

Sections not surveyed due to reasons such as re-sectioning, no escort, not accessible at the time of survey.

Date:06/02/2011

Work History Report

1 of 3

Pavement Database:

		i aveni	eni Dalabase.		
Network: X0 L.C.D.: 01/01	06 Br a 1/1985 Use: AF	anch: AP (APRON) PRON Rank: P Length:	300.00 Ft	Width:	Section: 4105 Surface: AC 240.00 Ft True Area: 72.000.00 SqF
Work Date	Work Code	Work Description	Cost	Thickness (in)	Major M&R Comments
01/01/1985 01/01/1985	IMPORTED IMPORTED	OVERLAY BUILT		2.00	True SOIL: SP True 1985: 2" P-401 ON 6" P-212
Network: X0 L.C.D.: 01/01	06 Br a 1/1987 Use : AF	anch: AP (APRON) PRON Rank: P Length:	150.00 Ft	Width:	Section: 4110 Surface: AC 75.00 Ft True Area: 13.435.00 SaF
Work Date	Work Code	Work Description	Cost	Thickness (in)	Major M&R Comments
01/01/1987 01/01/1987	IMPORTED IMPORTED	OVERLAY BUILT		2.00	True SOIL: SP True 1987: 2" P-401 ON 6" P-212
Network: X0 L.C.D.: 01/01	06 Br a 1/1985 Use : RU	anch: RW 5-23 (RUNWA) JNWAY Rank: P Length:	Y 5-53) 3.700.00 Ft	Width:	Section: 6105 Surface: AC 75.00 Ft True Area: 277.500.00 SaF
Work Date	Work Code	Work Description	Cost	Thickness (in)	Major M&R Comments
01/01/1985 01/01/1985	IMPORTED IMPORTED	OVERLAY BUILT		2.00	True SOIL: SP True 1985: 2" P-401 ON 6" P-212
Network: X0 L.C.D.: 01/01	06 Br a 1/1985 Use: TA	anch: TW (TAXIWA' XIWAY Rank: P Length:	Y) 3,965.00 Ft	Width:	Section: 105 Surface: AC 40.00 Ft True Area: 158,600.00 SqF
Work Date	Work Code	Work Description	Cost	Thickness (in)	Major M&R Comments
01/01/1985 01/01/1985	IMPORTED IMPORTED	OVERLAY BUILT		2.00	True SOIL: SP True 1985: 2" P-401 ON 6" P-212
Network: X0 L.C.D.: 01/01	06 Br a 1/1985 Use : TA	anch: TW (TAXIWA XIWAY Rank: P Length:	Y) 142.00 Ft	Width:	Section: 110 Surface: AC 40.00 Ft True Area: 7.820.00 SqF
Work Date	Work Code	Work Description	Cost	Thickness (in)	Major M&R Comments
01/01/1985 01/01/1985	IMPORTED IMPORTED	OVERLAY BUILT		2.00	True SOIL: SP True 1985: 2" P-401 ON 6" P212
Network: X0 L.C.D.: 01/01	06 Br a 1/1985 Use: TA	anch: TW (TAXIWA' XIWAY Rank: P Length:	Y) 80.00 Ft	Width:	Section : 115 Surface : AC 40.00 Ft True Area : 4.310.00 SqF
Work Date	Work Code	Work Description	Cost	Thickness (in)	Major M&R Comments
01/01/1985 01/01/1985	IMPORTED IMPORTED	OVERLAY BUILT		2.00	True SOIL: SP True 1985 2" P-401 ON 6" P-212
Network: X0 L.C.D.: 01/01	06 Br a 1/2000 Use: TA		R TAXIWAY) 500.00 Ft	Width:	Section: 210 Surface: AC 25.00 Ft True Area: 12.500.00 SqF
Work Date	Work Code	Work Description	Cost	Thickness (in)	Major M&R Comments
01/01/2000	INITIAL	Initial Construction	\$0	0.00	True
Network: X0 L.C.D.: 01/01	06 Br a 1/2000 Use : TA	•	R TAXIWAY) 235.00 Ft	Width:	Section: 220 Surface: AC 30.00 Ft True Area: 7,050.00 SqF
Work Date	Work Code	Work Description	Cost	Thickness (in)	Major M&R Comments
01/01/2000	INITIAL	Initial Construction	\$0	0.00	True

Date:06/02/2011

L.C.D.: 01/01/2000 Use: TAXIWAY

Network: X06

Work History Report

Pavement Database:

750.00 Ft

Branch: TW HANGAR

(HANGAR TAXIWAY)

Width:

Section: 230 25.00 Ft

Surface: AC

2 of 3

True Area: 18,750.00 SqF

Work Date	Work Code	Work Description	Cost	Thickness (in)	Major M&R	Comments
01/01/2000	ΙΝΙΤΙΔΙ	Initial Construction	\$0	0.00	True	

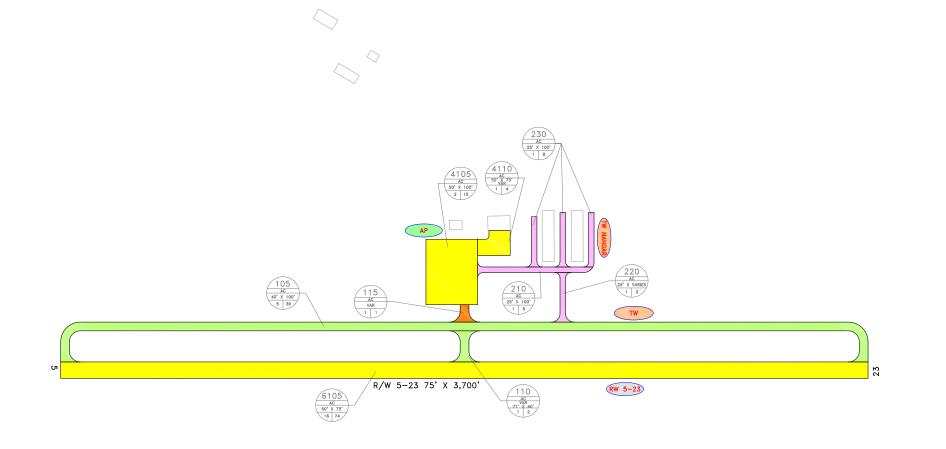
Rank:⊤ Length:

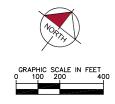
Date:06/02/2011

Work History Report

3 of 3

Pavement Database:


Summary:


Work Description	Section Count	Area Total (SqFt)	Thickness Avg (in)	Thickness STD (in)
BUILT	6	533,665.00	2.00	.00
Initial Construction	3	38,300.00	.00	.00
OVERLAY	6	533,665.00		

STD = Standard Deviation

APPENDIX B

2011 CONDITION MAP PAVEMENT CONDITION INDEX TABLE

LEGEND

TYPICAL RUNWAY BRANCH ID

TW A

TYPICAL TAXIWAY BRANCH ID

AP S

TYPICAL APRON BRANCH ID

PCI 86–100 GOOD

PCI 71–85 SATISFACTORY

PCI 56–70 FAIR

PCI 41–55 POOR

PCI 26–40 VERY POOR

PCI 11–25 SERIOUS

PCI 0–10 FAILED

RUNWAY LENGTHS DEPICTED IN THIS DRAWING ARE FOR PAVEMENT MANAGEMENT PURPOSES ONLY AND MAY NOT MATCH PUBLISHED RUNWAY LENGTHS.

K: \BF8_Aviation\142179	005\CACO\PLANSHEETS\X	DE/EDMBILLZ/002-NDE-CO		PLOTTED: July 11, 2011 - 2:04 PM, 8Y: Steeford, Rex					
DESIGNED:	ELT	DRAWN:	ALB	CHECKED:	DRB	DATE:			
NUMBER	DATE		REVISIONS						

2011 CONDITION MAP

ARCADIA MUNICIPAL AIRPORT
DESOTO COUNTY, FLORIDA

FLORIDA DEPARTMENT OF TRANSPORTATION - AVIATION OFFICE

X06

Table B-1: Pavement Condition Index

Branch Name	Branch ID	Branch Use	Section ID	True Area (ft²)	Section Rank	Surface Type	Total Samples Inspected	Total Samples	PCI	PCI Category
Apron	AP	APRON	4105	72,000	P	AC	2	15	66	Fair
Apron	AP	APRON	4110	13,435	P	AC	1	4	62	Fair
Runway 5-23	RW 5-23	RUNWAY	6105	277,500	P	AC	16	74	58	Fair
Taxiway	TW	TAXIWAY	105	158,600	P	AC	5	39	71	Satisfactory
Taxiway	TW	TAXIWAY	110	7,820	P	AC	1	2	79	Satisfactory
Taxiway	TW	TAXIWAY	115	4,310	P	AC	1	1	47	Poor
Taxiway Hangar	TW HANGAR	TAXIWAY	210	12,500	T	AC	1	5	29	Very Poor
Taxiway Hangar	TW HANGAR	TAXIWAY	220	7,050	Т	AC	1	2	40	Very Poor
Taxiway Hangar	TW HANGAR	TAXIWAY	230	18,750	T	AC	1	8	29	Very Poor

Note: If a new construction, then survey date = last construction date and PCI is set to 100 by MicroPAVER.

Sections not surveyed due to reasons such as re-sectioning, no escort, not accessible at the time of survey.

APPENDIX C

BRANCH CONDITION REPORT SECTION CONDITION REPORT

Branch Condition Report

1 of 2

Pavement Database: NetworkID: X06

Number of Sum Section Avg Section PCI Weighted True Area Use Average **Branch ID** Average PCI **Sections** Length Width Standard (SqFt) PCI (Ft) (Ft) Deviation AP (APRON) 2 450.00 157.50 85,435.00 **APRON** 2.00 65.37 64.00 RW 5-23 (RUNWAY 5-53) 1 3,700.00 75.00 277,500.00 **RUNWAY** 58.00 0.00 58.00 TW (TAXIWAY) 3 4,187.00 40.00 170,730.00 **TAXIWAY** 65.67 13.60 70.76 TW HANGAR (HANGAR TAXIWAY) 3 1,485.00 26.67 38,300.00 **TAXIWAY** 32.67 5.19 31.02

Branch Condition Report

2 of 2 Pavement Database:

Use Category	Number of Sections	Total Area (SqFt)	Arithmetic Average PCI	Average PCI STD.	Weighted Average PCI
APRON	2	85,435.00	64.00	2.00	65.37
RUNWAY	1	277,500.00	58.00	0.00	58.00
TAXIWAY	6	209,030.00	49.17	19.45	63.48
All	9	571,965.00	53.44	17.10	61.10

STD = Standard Deviation

TW HANGAR (HANGAR

230

01/01/2000

 AC

Section Condition Report

Pavement Database: NetworkID: X06

Last Age Section ID Last Surface Use Rank Lanes **True Area** PCI **Branch ID** Inspection Αt Const. (SqFt) Date Inspection Date AP (APRON) Ρ 4105 01/01/1985 AC **APRON** 0 72,000.00 02/02/2011 26 66.00 AP (APRON) 4110 01/01/1987 AC **APRON** Ρ 13,435.00 02/02/2011 24 62.00 RW 5-23 (RUNWAY 5-53) Ρ 0 277,500.00 02/02/2011 6105 01/01/1985 AC RUNWAY 26 58.00 TW (TAXIWAY) Ρ 105 01/01/1985 AC **TAXIWAY** 0 158,600.00 02/02/2011 26 71.00 TW (TAXIWAY) 01/01/1985 **TAXIWAY** Ρ 0 79.00 110 AC 7,820.00 11/03/2006 21 TW (TAXIWAY) 01/01/1985 Ρ 115 AC **TAXIWAY** 0 4,310.00 02/02/2011 26 47.00 TW HANGAR (HANGAR 210 01/01/2000 AC **TAXIWAY** Т 0 12,500.00 02/02/2011 11 29.00 TW HANGAR (HANGAR 220 01/01/2000 AC **TAXIWAY** Т 0 7,050.00 02/02/2011 40.00 11

TAXIWAY

Т

0

18,750.00 02/02/2011

1 of 2

29.00

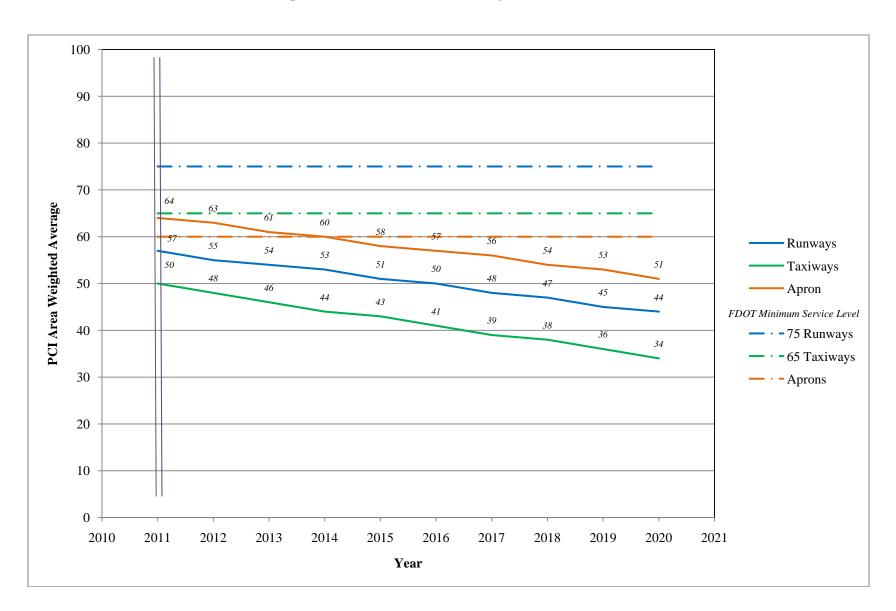
11

Section Condition Report

2 of 2

Pavement Database:

Age Category	Average Age At Inspection	Total Area (SqFt)	Number of Sections	Arithmetic Average PCI	PCI Standard Deviation	Weighted Average PCI
11-15	11.00	38,300.00	3	32.67	5.19	31.02
21-25	22.50	21,255.00	2	70.50	8.50	68.25
26-30	26.00	512,410.00	4	60.50	9.07	63.06
All	20.22	571,965.00	9	53.44	17.10	61.10


APPENDIX D

PAVEMENT CONDITION PREDICTION TABLE PREDICTED PCI BY PAVEMENT USE GRAPH

Table D-1: Pavement Condition Prediction

Branch Name	Duon sh ID	Section	Current	PCI Forecast									
Dranch Name	Branch ID	ID	PCI	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Apron	AP	4105	66	65	64	63	61	60	58	57	55	54	52
Apron	AP	4110	62	61	60	59	57	56	54	53	51	50	48
Runway 5-23	RW 5-23	6105	58	57	56	54	53	52	50	49	47	46	44
Taxiway	TW	105	71	70	69	67	65	63	62	60	58	57	55
Taxiway	TW	110	79	71	69	68	66	64	62	61	59	57	56
Taxiway	TW	115	47	46	45	43	41	39	38	36	34	33	31
Taxiway Hangar	TW HANGAR	210	29	28	27	25	23	21	20	18	16	15	13
Taxiway Hangar	TW HANGAR	220	40	39	38	36	34	32	31	29	27	26	24
Taxiway Hangar	TW HANGAR	230	29	28	27	25	23	21	20	18	16	15	13

Figure D-1: Predicted PCI by Pavement Use

APPENDIX E

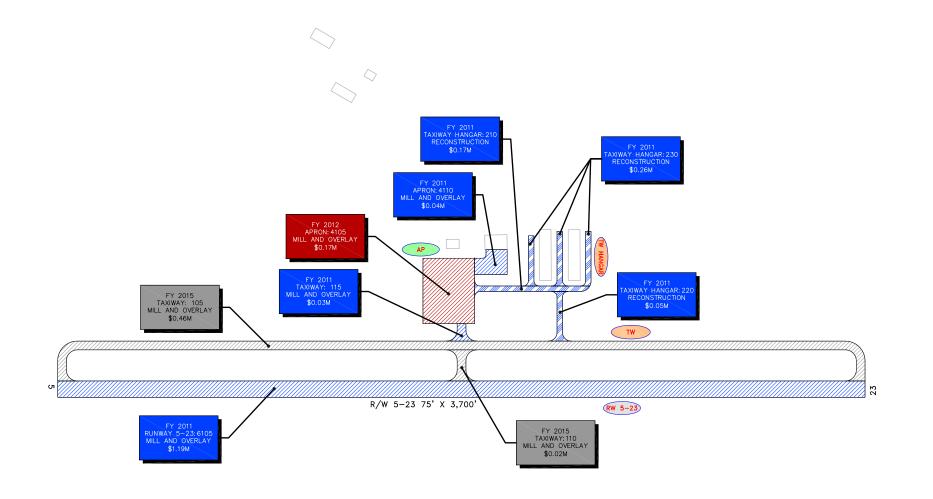
YEAR 1 MAINTENANCE ACTIVITIES TABLE

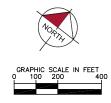
Table E-1: Year 1 Maintenance Activities

Branch Name	Branch ID	Section ID	Distress Description	Distress Severity	Work Description		Work Unit	Unit Cost	Work Cost
Apron	AP	4105	WEATH/RAVEL	L	Surface Seal - Rejuvenating	46,799.60	SqFt	\$0.40	\$18,720.00
Taxiway	TW	105	WEATH/RAVEL	L	Surface Seal - Rejuvenating	72,956.10	SqFt	\$0.40	\$29,182.69
Taxiway	TW	110	WEATH/RAVEL	L	Surface Seal - Rejuvenating	2,083.80	SqFt	\$0.40	\$833.52
								Total =	\$48,736.21

APPENDIX F

MAJOR M&R PLAN BY YEAR UNDER UNLIMITED FUNDING SCENARIO TABLE


Table F-1: Major M&R Plan by Year under Unlimited Funding Scenario


Year	Branch Name	Section ID	Surface Type	Section Area (ft²)	Major M&R Costs*	PCI Before M&R	M&R Activity	PCI After Maint.
2011	Apron	4110	AC	13,435	\$42,279.98	61	Mill and Overlay	100
2011	Runway 5-23	6105	AC	277,500	\$1,187,978.06	57	Mill and Overlay	100
2011	Taxiway	115	AC	4,310	\$27,109.90	46	Mill and Overlay	100
2011	Taxiway Hangar	210	AC	12,500	\$170,250.06	28	Reconstruction	100
2011	Taxiway Hangar	220	AC	7,050	\$49,512.16	39	Reconstruction	100
2011	Taxiway Hangar	230	AC	18,750	\$255,375.08	28	Reconstruction	100
2012	Apron	4105	AC	72,000	\$172,644.59	64	Mill and Overlay	100
2015	Taxiway	105	AC	158,600	\$464,293.60	63	Mill and Overlay	100
2015	Taxiway	110	AC	7,820	\$20,489.86	64	Mill and Overlay	100
				Total	\$2,389,933.29	50		100

^{*} Costs are adjusted for inflation.

APPENDIX G

10-YEAR M&R MAP

LEGEND

TW A TYPICAL TAXIWAY BRANCH ID

AP S TYPICAL APRON BRANCH ID

2011 2012 2013 2014 2015

2018 2019

YEAR

ACTIVITY

MICROSURFACING

MILL AND OVERLAY

RECONSTRUCTION

2015 2016 2017

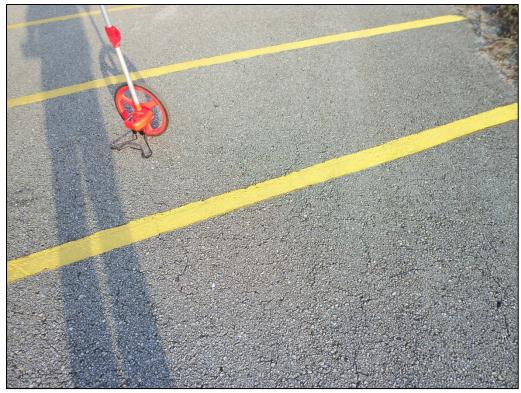
CONCRETE PAVEMENT RESTORATION

X06

"PLAN YEAR"
"BRANCH": "SECTION"
"M AND R ACTIVITY"
"EST. COST"

RUNWAY LENGTHS DEPICTED IN THIS DRAWING ARE FOR PAVEMENT MANAGEMENT PURPOSES ONLY AND MAY NOT MATCH PUBLISHED RUNWAY LENGTHS.

K: \WF6_Aviation\14217	IC.\WFB_Abdston\\427790035\CAEO\\FLAESHEETS\\XE\\D08873\CO4-XXE-MARTDAWGE.deg PLOTED: July 11, 2011 - 2:05 PM, BY: Storbind, Rex									
DESIGNED:	ELT	DRAWN:	ALB	CHECKED:	DRB	DATE:				
NUMBER	DATE		REVISIONS							



APPENDIX H

PHOTOGRAPHS

Apron, Section 4105, Sample Unit 100 – Low severity (52) Weathering and Raveling, low severity (48) Longitudinal and Transverse Cracking, and low severity (43) Block Cracking.

Apron, Section 4105, Sample Unit 100 – Low severity (52) Weathering and Raveling, low severity (48) Longitudinal and Transverse Cracking, and low severity (43) Block Cracking.

Apron, Section 4110, Sample Unit 401 – Low severity (52) Weathering and Raveling and low severity (43) Block Cracking.

Apron, Section 4110, Sample Unit 401 – Low severity (52) Weathering and Raveling and low severity (43) Block Cracking.

Taxiway Access to Hangars, Section 230, Sample Unit 102 – Medium severity (43) Block Cracking and medium severity (52) Weathering and Raveling.

Taxiway Access to Hangars, Section 230, Sample Unit 102 – Medium severity (43) Block Cracking and medium severity (52) Weathering and Raveling.

Runway 5-23, Section 6105, Sample Unit 106 – Low severity (48) Longitudinal and Transverse Cracking, medium and high severity (52) Weathering and Raveling, and low severity (43) Block Cracking.

Runway 5-23, Section 6105, Sample Unit 106 – Medium severity (48) Longitudinal and Transverse Cracking, medium and high severity (52) Weathering and Raveling, and low severity (43) Block Cracking.

APPENDIX I

PCI RE-INSPECTION REPORT

FDOT

Report Generated Date: 3/17/2011

Site Name:

Network: X06 Name: ARCADIA MUNICIPAL AIRPORT

Branch: Name: APRON Use: APRON Area: 85,435.00SqFt AP

To: -Section: 4105 of 2 From: -Last Const.: 1/1/1985

240.00Ft

Surface: Family: FDOT-GA-AP-AC Zone: Category: Rank: P AC

Length: Width: Area: 72,000.00SqFt 300.00Ft

Shoulder: Street Type: Grade: 0.00 Lanes: 0

Section Comments:

Last Insp. Date2/2/2011 Total Samples: 15 Surveyed: 2

Conditions: PCI:66.00 | Inspection Comments: KHA

Sample Number: 100 Type: R Area: 5,000.00SqFt

Sample Comments: 52 WEATHERING/RAVELING

4,499.96 SqFt L Comments: 2,499.98 SqFt 43 BLOCK CRACKING \mathbf{L} Comments:

48 LONGITUDINAL/TRANSVERSE CRACKING L 52.01 Ft Comments:

Sample Number: 302 5,000.00SqFt Type: R Area:

Sample Comments: 43 BLOCK CRACKING \mathbf{L}

190.00 SqFt Comments: 48 LONGITUDINAL/TRANSVERSE CRACKING 197.05 Ft \mathbb{L} Comments: 600.00 SqFt Comments:

43 BLOCK CRACKING \mathbf{L} 1,999.98 SqFt 52 WEATHERING/RAVELING \mathbf{L} Comments:

FDOT

Report Generated Date: 3/17/2011

Site Name:

Network: X06 Name: ARCADIA MUNICIPAL AIRPORT

Branch: AP Name: APRON Use: APRON Area: 85,435.00SqFt

Section: 4110 of 2 From: - To: - Last Const.: 1/1/1987

Surface: AC Family: FDOT-GA-AP-AC Zone: Category: Rank: P Area: 13,435.00SqFt Length: 150.00Ft Width: 75.00Ft

Area: 13,435.00SqFt Length: 150.00Ft W Shoulder: Street Type: Grade: 0.00 Lanes: 0

Section Comments:

Last Insp. Datc2/2/2011 Total Samples: 4 Surveyed: 1

Conditions: PCI:62.00 | Inspection Comments: KHA

Sample Number: 401 Type: R Area: 3,750.00SqFt

Sample Comments:

43 BLOCK CRACKING L 2,800.00 SqFt Comments: 52 WEATHERING/RAVELING L 3,000.00 SqFt Comments:

FDOT

Report Generated Date: 3/17/2011

Site Name:

Network: X06 Name: ARCADIA MUNICIPAL AIRPORT Use: RUNWAY Branch: RW 5-23 Name: RUNWAY 5-53 Area: 277,500.00SqFt Section: of 1 From: -To: -Last Const.: 1/1/1985 6105 Surface: AC Family: FDOT-GA-RW-AC Zone: Category: Rank: P Area: 277,500.00SqFt Length: 3,700.00Ft Width: 75.00Ft Shoulder: Street Type: Grade: 0.00 Lanes: 0 Section Comments: Last Insp. Date2/2/2011 Total Samples: 74 Surveyed: 16 Conditions: PCI:58.00 | Inspection Comments: KHA Sample Number: 102 Type: R Area: 3,750.00SqFt Sample Comments: 48 LONGITUDINAL/TRANSVERSE CRACKING \mathbf{L} 138.00 Ft Comments: 43 BLOCK CRACKING \mathbf{L} 700.00 SqFt Comments: 52 WEATHERING/RAVELING Μ 1,500.00 SqFt Comments: 52 WEATHERING/RAVELING L 1,000.00 SqFt Comments: Sample Number: 106 Type: R Area: 3,750.00SqFt Sample Comments: 48 LONGITUDINAL/TRANSVERSE CRACKING 243.00 Ft \mathbf{L} Comments: 52 WEATHERING/RAVELING 1,500.00 SqFt Μ Comments: 52 WEATHERING/RAVELING 1,000.00 SqFt L Comments: 43 BLOCK CRACKING $_{\rm L}$ 104.00 SqFt Comments: Sample Number: 112 Type: R Area: 3,750.00SqFt Sample Comments: 48 LONGITUDINAL/TRANSVERSE CRACKING \mathbb{L} 250.00 Ft Comments: 52 WEATHERING/RAVELING 1,500.00 SqFt Μ Comments: 52 WEATHERING/RAVELING \mathbf{L} 1,000.00 SqFt Comments: 43 BLOCK CRACKING Τ. 25.00 SqFt Comments: Sample Number: 118 Type: R Area: 3,750.00SqFt Sample Comments: 48 LONGITUDINAL/TRANSVERSE CRACKING 175.00 Ft Comments: L 52 WEATHERING/RAVELING Μ 1,500.00 SqFt Comments: 52 WEATHERING/RAVELING 1,000.00 SqFt \mathbf{L} Comments: Sample Number: 119 Type: R 3,750.00SqFt Area: Sample Comments: 48 LONGITUDINAL/TRANSVERSE CRACKING L 224.00 Ft Comments: 52 WEATHERING/RAVELING 1,500.00 SqFt Comments: M 52 WEATHERING/RAVELING L 1,000.00 SqFt Comments: 20.00 SqFt 50 PATCHING L Comments: Sample Number: 124 Type: R 3,750.00SqFt Area: Sample Comments: 48 LONGITUDINAL/TRANSVERSE CRACKING L 231.00 Ft Comments: 52 WEATHERING/RAVELING L 2,500.00 SqFt Comments: 52 WEATHERING/RAVELING 80.00 SqFt M Comments: Sample Number: 130 Type: R Area: 3,750.00SqFt Sample Comments: 52 WEATHERING/RAVELING L 2,400.00 SqFt Comments: 48 LONGITUDINAL/TRANSVERSE CRACKING 187.00 Ft L Comments:

FDOT

Report Generated Date: 3/17/2011

Site Name:

Consult Newsham and			2.550.000 -		
Sample Number: 134 Type: R Sample Comments:	Area:		3,750.00SqFt		
43 BLOCK CRACKING		L	375.00	SaFt	Comments:
48 LONGITUDINAL/TRANSVERSE CRACKING		L	203.00		Comments:
52 WEATHERING/RAVELING		Μ	500.00	SqFt	Comments:
52 WEATHERING/RAVELING		L	2,000.00	SqFt	Comments:
Sample Number: 137 Type: R	Area:		3,750.00SqFt		
Sample Comments:			•		
48 LONGITUDINAL/TRANSVERSE CRACKING		L	122.00		Comments:
43 BLOCK CRACKING		L	1,750.00		Comments:
52 WEATHERING/RAVELING		M	1,000.00		Comments:
52 WEATHERING/RAVELING		L	1,000.00	SqFt	Comments:
Sample Number: 142 Type: R Sample Comments:	Area:		3,750.00SqFt		
48 LONGITUDINAL/TRANSVERSE CRACKING		L	175.00	Ft	Comments:
43 BLOCK CRACKING		L	18.00		Comments:
52 WEATHERING/RAVELING		M	1,500.00		Comments:
52 WEATHERING/RAVELING		L	1,000.00	SqFt	Comments:
Sample Number: 148 Type: R Sample Comments:	Area:		3,750.00SqFt		
48 LONGITUDINAL/TRANSVERSE CRACKING		L	125.00	Ft	Comments:
52 WEATHERING/RAVELING		Μ	1,500.00		Comments:
52 WEATHERING/RAVELING		L	1,000.00	SqFt	Comments:
Sample Number: 154 Type: R	Area:		3,750.00SqFt		
Sample Comments: 48 LONGITUDINAL/TRANSVERSE CRACKING		L	136.00	F+	Comments:
52 WEATHERING/RAVELING		L	1,000.00		Comments:
Sample Number: 160 Type: R	Area:		2 750 00SaEt		
Sample Comments:	Arca.		3,750.00SqFt		
43 BLOCK CRACKING		L	132.00	SqFt	Comments:
48 LONGITUDINAL/TRANSVERSE CRACKING		L	200.00	Ft	Comments:
52 WEATHERING/RAVELING		L	1,000.00	SqFt	Comments:
Sample Number: 166 Type: R	Area:		3,750.00SqFt		
Sample Comments: 48 LONGITUDINAL/TRANSVERSE CRACKING		L	210.00	Ft	Comments:
43 BLOCK CRACKING		L	500.00		Comments:
52 WEATHERING/RAVELING		L	2,400.00		Comments:
Sample Number: 170 Type: R Sample Comments:	Area:		3,750.00SqFt		
52 WEATHERING/RAVELING		Μ	700.00	SaF+	Comments:
52 WEATHERING/RAVELING		L	2,500.00		Comments:
48 LONGITUDINAL/TRANSVERSE CRACKING		L	200.00		Comments:
43 BLOCK CRACKING		L	400.00		Comments:
Sample Number: 173 Type: R Sample Comments:	Area:		3,750.00SqFt		
52 WEATHERING/RAVELING		Μ	600.00	SqFt	Comments:
48 LONGITUDINAL/TRANSVERSE CRACKING		L	120.00	_	Comments:
52 WEATHERING/RAVELING		L	2,800.00		Comments:

FDOT

Report Generated Date: 3/17/2011

Site Name:

Network: X06 Name: ARCADIA MUNICIPAL AIRPORT Branch: Name: TAXIWAY Use: TAXIWAY Area: 170,730.00SqFt TW 3 To: -Section: 105 of From: -Last Const.: 1/1/1985 Surface: Family: FDOT-GA-TW-AC Zone: Category: Rank: P ACLength: Width: 40.00Ft Area: 158,600.00SqFt 3,965.00Ft Shoulder: Street Type: Grade: 0.00 Lanes: 0 Section Comments: Last Insp. Date2/2/2011 Total Samples: 39 Surveyed: 5 Conditions: PCI:71.00 | Inspection Comments: KHA Sample Number: 101 Type: R Area: 4,000.00SqFt Sample Comments: 48 LONGITUDINAL/TRANSVERSE CRACKING L 201.00 Ft Comments: 43 BLOCK CRACKING \mathbf{L} 800.00 SqFt Comments: 52 WEATHERING/RAVELING L 2,000.00 SqFt Comments: Sample Number: 109 Type: R 4,000.00SqFt Area: Sample Comments: 48 LONGITUDINAL/TRANSVERSE CRACKING 180.00 Ft \mathbf{L} Comments: 43 BLOCK CRACKING 280.00 SqFt Comments: \mathbb{L} 52 WEATHERING/RAVELING 2,000.00 SqFt \mathbf{L} Comments: Sample Number: 117 Type: R 4,000.00SqFt Area: Sample Comments: 48 LONGITUDINAL/TRANSVERSE CRACKING L 192.00 Ft Comments: 52 WEATHERING/RAVELING L 2,000.00 SqFt Comments: 43 BLOCK CRACKING L 150.00 SqFt Comments: Sample Number: 125 Type: R 4,000.00SqFt Area: Sample Comments: 48 LONGITUDINAL/TRANSVERSE CRACKING 320.00 Ft Comments: L 52 WEATHERING/RAVELING 2,000.00 SqFt L Comments:

· ·		•	_	
Sample Number: 133 Type: R	Area:	4,000.00SqFt		
Sample Comments: 48 LONGITUDINAL/TRANSVERSE CRACKING	L	255.00	F+	Comments:
52 WEATHERING/RAVELING	L	1,200.00		Comments:
43 BLOCK CRACKING	L	80.00	SqFt	Comments:

FDOT

Report Generated Date: 3/17/2011

Site Name:

Network: X06 Name: ARCADIA MUNICIPAL AIRPORT

Branch: TW Name: TAXIWAY Use: TAXIWAY Area: 170,730.00SqFt

Section: 110 of 3 From: - To: - Last Const.: 1/1/1985

40.00Ft

Surface: AC Family: FDOT-GA-TW-AC Zone: Category: Rank: P

Area: 7,820.00SqFt Length: 142.00Ft Width: Shoulder: Street Type: Grade: 0.00 Lanes: 0

Section Comments:

Last Insp. Date11/3/2006 Total Samples: 2 Surveyed: 1

Conditions: PCI:79.00 | Inspection Comments:

Sample Number: 201 Type: R Area: 3,768.00SqFt

Sample Comments:

48 LONGITUDINAL/TRANSVERSE CRACKING L 64.02 Ft Comments: 52 WEATHERING/RAVELING L 1,099.99 SqFt Comments:

FDOT

Report Generated Date: 3/17/2011

Site Name:

Network: X06 Name: ARCADIA MUNICIPAL AIRPORT

Branch: TW Name: TAXIWAY Use: TAXIWAY Area: 170,730.00SqFt

Section: 115 of 3 To: -From: -Last Const.: 1/1/1985

40.00Ft

Family: FDOT-GA-TW-AC Surface: AC Zone: Category: Rank: P

Length: Width: Area: 80.00Ft 4,310.00SqFt Shoulder: Street Type: Grade: 0.00 Lanes: 0

Section Comments:

Total Samples: 1 Surveyed: 1 Last Insp. Date2/2/2011

Conditions: PCI:47.00 | Inspection Comments: KHA

Sample Number: 300 Sample Comments:	Гуре: R	Area:	4,310.00SqFt		
48 LONGITUDINAL/TRANS	VERSE CRACKING	L	91.00	Ft	Comments:
43 BLOCK CRACKING		L	400.00	SqFt	Comments:
52 WEATHERING/RAVELING	G	L	1,100.00	SqFt	Comments:
48 LONGITUDINAL/TRANS	VERSE CRACKING	M	13.00	Ft	Comments:
50 PATCHING		M	650.00	SqFt	Comments:

FDOT

Report Generated Date: 3/17/2011

Site Name:

Network: X06 Name: ARCADIA MUNICIPAL AIRPORT

Branch: TW HANGAR Name: HANGAR TAXIWAY Use: TAXIWAY Area: 38,300.00SqFt

Section: 210 of 3 From: To: Last Const.: 1/1/2000

Surface: AC Family: FDOT-GA-TW-AC Zone: Category: Rank: T Area: 12,500.00SqFt Length: 500.00Ft Width: 25.00Ft

Area: 12,500.00SqFt Length: 500.00Ft V Shoulder: Street Type: Grade: 0.00 Lanes: 0

Section Comments:

Last Insp. Date2/2/2011 Total Samples: 5 Surveyed: 1

Conditions: PCI:29.00 | Inspection Comments: KHA

Sample Number: 102 Type: R Area: 2,500.00SqFt

Sample Comments:

43 BLOCK CRACKING M 2,200.00 SqFt Comments: 52 WEATHERING/RAVELING M 2,200.00 SqFt Comments:

FDOT

Report Generated Date: 3/17/2011

Site Name:

Network: X06 Name: ARCADIA MUNICIPAL AIRPORT

Branch: TW HANGAR Name: HANGAR TAXIWAY Use: TAXIWAY Area: 38,300.00SqFt

Section: 220 of 3 From: To: Last Const.: 1/1/2000

Surface: AC Family: FDOT-GA-TW-AC Zone: Category: Rank: T Area: 7,050.00SqFt Length: 235.00Ft Width: 30.00Ft

Area: 7,050.00SqFt Length: 235.00Ft V Shoulder: Street Type: Grade: 0.00 Lanes: 0

Section Comments:

Last Insp. Date2/2/2011 Total Samples: 2 Surveyed: 1

Conditions: PCI:40.00 | Inspection Comments: KHA

Sample Number: 100 Type: R Area: 3,525.00SqFt

Sample Comments:

43 BLOCK CRACKING M 2,000.00 SqFt Comments: 52 WEATHERING/RAVELING M 2,000.00 SqFt Comments:

FDOT

Report Generated Date: 3/17/2011

Site Name:

Network: X06 Name: ARCADIA MUNICIPAL AIRPORT

Name: HANGAR TAXIWAY Branch: TW HANGAR Use: TAXIWAY Area: 38,300.00SqFt

Section: of 3 To: 230 From: Last Const.: 1/1/2000

Family: FDOT-GA-TW-AC Surface: AC Zone: Category: Rank: T Width: 25.00Ft

Area: Length: 18,750.00SqFt 750.00Ft

Shoulder: Street Type: Grade: 0.00 Lanes: 0

Section Comments:

Total Samples: 8 Surveyed: 1 Last Insp. Datc2/2/2011

Conditions: PCI:29.00 | Inspection Comments: KHA

Sample Number: 104 Type: R Area: 2,500.00SqFt

Sample Comments:

43 BLOCK CRACKING Μ 2,200.00 SqFt Comments: 52 WEATHERING/RAVELING 2,200.00 SqFt Μ Comments: