
FLORIDA DEPARTMENT OF TRANSPORTATION AVIATION AND SPACEPORT OFFICE

TABLE OF CONTENTS

Exe	ecutive Summary	1
1.	Introduction	7
2.	Airfield Pavement Network Definition and Pavement Inventory	19
3.	Airfield Pavement Condition	25
4.	Pavement Performance	35
5.	Airfield Pavement Maintenance Policies and Costs	39
6.	Major Pavement Rehabilitation Needs	47
7.	Preventative and Major Rehabilitation Planning	51
8.	Visual Aid Exhibits	55
9.	Recommendations	57
LIS	ST OF TABLES	
Tak	ole I: Condition Summary by Branch	2
Tak	ole II: Condition Summary by Pavement Facility Use	3
Tak	ole III: Year-1 Major Rehabilitation Needs for Peter O. Knight Airport	4
Tak	ole IV: 10-Year Preventative Maintenance and Major Rehabilitation	5
Tak	ole 1-1: Sampling Rate Schedule for SAPMP PCI Survey Inspections	15
Tak	ole 2-1: Previous and/or Anticipated Airfield Pavement Construction	21
Tak	ole 2-2: Pavement Inventory Summary	22
Tak	ole 2-3: Airfield Pavement Inventory Details	23
Tak	ole 3-1: Airfield Pavement Distresses for Asphalt Concrete	28
Tak	ole 3-2: Airfield Pavement Distresses for Portland Cement Concrete	29
Tak	ole 3-3: Pavement Condition Index Rating Summary	32
Tak	ole 5-1: Recommended AC, AAC, and APC Maintenance and Repair Policy	40
Tak	ole 5-2: Recommended PCC Maintenance and Repair Policy	41
Tak	ole 5-3: Critical and Minimum Service Level PCI for Regional Reliever Airports	43
Tak	ole 5-4: Maintenance and Major Rehabilitation Activity Based on PCI	43
Tak	ole 5-5: AC Maintenance Unit Costs	45
Tak	ole 5-6: PCC Maintenance Unit Costs	45
	ole 5-7: Rehabilitation Activities and Unit Costs by Condition for Regional Reliever	46
Tak	ole 6-1: Summary of Major Rehabilitation	48
Tah	ole 7-1: 10-Year Preventative and Major Rehabilitation Summary	51

LIST OF FIGURES

Figure 1-1: Pavement Life Cycle	13
Figure 1-2: Flexible Pavement, Asphalt Concrete	16
Figure 1-3: Rigid Pavement, Portland Cement Concrete	17
Figure 2-1: Airfield Pavement Type	23
Figure 3-1: Airfield Pavement Condition Index Rating Summary	31
Figure 3-2: Percentage of Pavement Area by Condition Rating by Use	33
Figure 4-1: Runway Pavement Performance Prediction Summary	36
Figure 4-2: Taxiway Pavement Performance Prediction Summary	36
Figure 4-3: Apron Pavement Performance Prediction Summary	37
Figure 6-1: 10-Year Major Rehabilitation Budget Scenario Analysis	49
Figure 7-1: 10-Year Preventative and Major Rehabilitation Summary	52

APPENDICES

Appendix A	Airfield Pavement Network Definition Exhibit
	Airfield Pavement System Inventory Exhibit
	Pavement Geometry Inventory
	Work History Report
Appendix B	Airfield Pavement Condition Index Rating Exhibit
	Pavement Condition Index Inventory
Appendix C	Branch Condition Report
	Section Condition Report
Appendix D	Pavement Performance Prediction Table
	Pavement Performance by Pavement Use
Appendix E	Year-1 Preventative Activities
Appendix F	Airfield Pavement 10-Year Major Rehabilitation Exhibit
	Airfield Pavement 10-Year Major Rehabilitation Table
Appendix G	Photographs
Appendix H	Distress Data - Re-inspection Report

EXECUTIVE SUMMARY

In 2012, the Florida Department of Transportation (FDOT) Central Aviation Office selected a team lead by Kimley-Horn and Associates, Inc. and including their subconsultants Penuel Consulting and LLC, Roy D. McQueen & Associates, LTD, to provide services in support of FDOT in the continued efforts of updating the existing Statewide Airfield Pavement Management Program (SAPMP). This work is to be completed over the fiscal years of 2013 through 2015.

The tasks required to achieve this objective at each participating airport specifically included the following:

- Obtain recent construction history from the airport to update the Pavement Network Definition Exhibits using CADD from the previous SAPMP update.
- Update the airport pavement inventory data (construction history, geometry, identification, and classification) based on airport provided information.
- Update the FDOT SAPMP MicroPAVER database files and system tables for the purpose of analyzing field data for Pavement Condition Index (PCI) calculation of current pavement condition
- Development of pavement performance models for the approximation of future pavement performance.
- Development of a maintenance and repair plan, and a 10-year major rehabilitation program to address the pavement needs based on condition.
- Development of planning level opinions of probable costs for pavement preservation and rehabilitation.

In October 2014, a PCI survey inspection was performed at Peter O. Knight Airport. The results of the inspection indicate that, based on ASTM D 5340-12, the airport's airfield pavement facilities had an overall area-weighted average PCI of representing a Satisfactory overall network condition. summarizes the overall condition summary by network level branch in comparison to the FDOT recommended minimum service level and action recommendations for either major rehabilitation or maintenance level activities.

Table I: Condition Summary by Branch

Branch Name	Area Weighted PCI	PCI Range	Average Condition Rating	FDOT Minimum Service Level	MicroPAVER Minimum PCI	Action Required
APRON	82	63 - 84	SATISFACTORY	65	65	Х
APRON RUN-UP	87	70 - 94	GOOD	65	65	
RUNWAY 18-36	85	85	SATISFACTORY	75	65	
RUNWAY 4-22	62	58 - 93	FAIR	75	65	Х
TAXILANE TO EAST HANGARS	94	94	GOOD	65	65	
Taxiway Alpha	66	60 - 94	FAIR	65	65	Χ
TAIXWAY BRAVO	82	57 - 93	SATISFACTORY	65	65	Χ
TAXIWAY CHARLIE	61	55 - 77	FAIR	65	65	Χ
TAXIWAY CENTER	87	80 - 90	GOOD	65	65	
Taxiway delta	88	45 - 94	GOOD	65	65	Χ
TAXIWAY ECHO	75	59 - 90	SATISFACTORY	65	65	Χ
TAXIWAY FOXTROT	87	69 - 89	GOOD	65	65	
TAXIWAY GOLF	94	94	GOOD	65	65	
TAXIWAY TO T-HANGARS	53	53	POOR	65	65	Х

"Action Required" in Table I is triggered when a section within the identified Branch Facility falls below the FDOT Minimum Service Level. Year 1 Major Rehabilitation needs are triggered in Table III when a section in the identified Branch falls below the MicroPAVER Minimum PCI. Major Rehabilitation is also triggered in Table III when the section PCI is above critical and the section exhibits significant structural related distresses.

For project level planning and inspection development; the airfield pavement facilities have been divided at the branch level based on facility use and designation, and at the section level based on pavement construction history, composition (e.g. asphalt versus concrete), aircraft traffic operations, and pavement surface conditions. Table II provides the overall area weighted condition of the pavement based on facility branch use.

Table II: Condition Summary	by Pavement Facility Use
-----------------------------	--------------------------

Use	Average Area- Weighted PCI	Condition Rating
Runway	70	FAIR
Taxiway	75	SATISFACTORY
Apron	82	SATISFACTORY

Based on the inspection performed at the airport for this SAPMP update; the current conditions were determined using the collected PCI distress data. PCI values were computed and used to identify pavement facilities that were below the defined critical PCI as sections that would benefit from immediate major rehabilitation activity. These pavement sections that were determined to be below the critical PCI would most likely benefit from long-term major rehabilitative construction activity rather than localized, short-term maintenance and repairs.

The Year-1 Major Rehabilitation Needs, or projects that are recommended to be completed because the pavement is below the critical PCI, were developed on the assumption that there is an unlimited repair budget. These projects include:

- Runway 4-22 Section 6105
 - Mill and Overlay attributed to climate and age of pavement.
- Apron Section 4140
 - Mill and Overlay attributed to climate and age of pavement.
- Taxiway T-Hangar Section 705
 - Mill and Overlay attributed to climate and age of pavement.
- Taxiway E Section 510
 - Mill and Overlay attributed to climate and age of pavement.
- Taxiway D Section 425
 - Mill and Overlay attributed to climate and age of pavement.
- Taxiway C Section 310
 - Mill and Overlay attributed to climate and age of pavement.
- Taxiway B Section 150
 - Mill and Overlay attributed to climate and age of pavement.
- Taxiway A Section 105
 - Mill and Overlay attributed to climate and age of pavement.

The section level projects that were identified as Year-1 Major Rehabilitation Needs are in Table III.

Table III: Year-1 Major Rehabilitation Needs for Peter O. Knight Airport

Branch ID	Section ID	Major Rehabilitation Costs	PCI Before M&R	Rehabilitation Activity	PCI After M&R
RW 4-22	6105	\$ 4,657,501.00	57	Mill and Overlay	100
AP	4140	\$ 224,502.00	62	Mill and Overlay	100
TW T-HANG	705	\$ 1,080,361.00	52	Mill and Overlay	100
TW E	510	\$ 166,887.00	58	Mill and Overlay	100
TW D	425	\$ 96,591.00	44	Mill and Overlay	100
TW C	310	\$ 252,600.00	54	Mill and Overlay	100
TW B	150	\$ 70,095.00	56	Mill and Overlay	100
TW A	105	\$ 1,548,783.00	59	Mill and Overlay	100
	Total =	\$ 8,097,320.00			

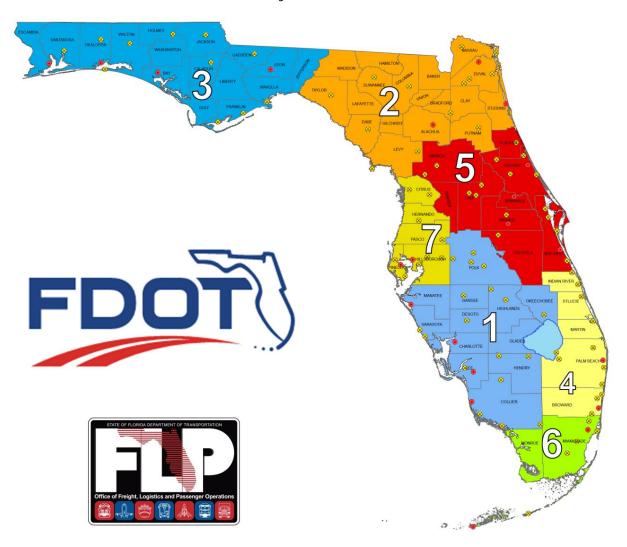
The SAPMP uses historic pavement condition data from the previous inspections to develop pavement performance models. These pavement performance models are used to create PCI prediction curves to estimate future pavement conditions based on the historic trends. The section areas, prediction curves, and current condition data were used to develop a 10-year major rehabilitation program. Major rehabilitation costs for each year of the 10-year program are based on general unit costs for pavement repairs and not detailed cost estimates that are typically prepared for a construction set of bid documents. Additionally, preventative maintenance level repair budgets were estimated for a 10-year duration. Table IV provides an annual summary of the 10-year Preventative Maintenance and Major Rehabilitation planning level cost opinions for the airfield pavement facilities at the airport. Refer to Section 6 of this report for additional information.

Since the previous update performed in 2012, significant updates to the ASTM D 5340 Standard Test Method for Airport Pavement Condition Index Surveys have affected the analysis of the program. These include the separation of Weathering and Raveling into two distinct flexible pavement distresses, and the addition of the Alkali-Silica Reaction distress for rigid pavement distresses. Additionally, the deterioration associated with the rigid pavement distress Scaling/Map Cracking has been modified. The change in distress classification, as described in ASTM D 5340-12, may result in small variances in the PCI values from the previous inspection analysis. The update included changes in distress deduction values

that may be less than the previous analysis. Please refer to Section 3 Airfield Pavement Condition Index for additional information.

Additionally, pavement repair and rehabilitation work reported by the airports are entered into the SAPMP which can improve PCI values.

Table IV: 10-Year Preventative Maintenance and Major Rehabilitation


Year	Preventative	Major M&R		Total Year Cost	
2015	\$ 82,329.16	\$	8,097,320.02	\$	8,179,649.18
2016	\$ 108,172.15	\$	-	\$	108,172.15
2017	\$ 129,410.84	\$	203,384.76	\$	332,795.61
2018	\$ 153,894.05	\$	-	\$	153,894.05
2019	\$ 179,208.94	\$	-	\$	179,208.94
2020	\$ 203,549.19	\$	76,265.88	\$	279,815.07
2021	\$ 248,217.18	\$	-	\$	248,217.18
2022	\$ 293,235.30	\$	132,180.72	\$	425,416.03
2023	\$ 346,240.22	\$	-	\$	346,240.22
2024	\$ 398,810.87	\$	115,011.54	\$	513,822.41
Total	\$ 2,143,067.90	\$	8,624,162.92	\$	10,767,230.84

The success of the repair program for your airport depends on the timely implementation of preservation, localized maintenance and repairs, and major rehabilitation work activities. If work is completed as scheduled, your airport should experience an improvement to the overall area-weighted average PCI. Though this analysis was performed with the assumption of an "unlimited budget", the purpose has been to identify specific projects over the course of 10-years for each pavement section where the condition is projected to fall below the critical PCI. The costs depicted in this study are intended to aid the airports in planning level budgets. Prior to construction work, it is recommended that the airport perform additional investigation at the design level to better estimate costs associated with the maintenance, repair, and major rehabilitation activity discussed.

1. INTRODUCTION

The State of Florida has more than 100 public airports that are vital to the Florida economy as well as the economy of the United States. The aviation system in Florida allows the State to capitalize on an increasingly global marketplace. Florida's system of commercial service and general aviation airports are important to businesses throughout the entire State. Air travel is essential to tourism, Florida's number one industry.

There are millions of square feet of pavement infrastructure that consists of runways, taxiways, aprons, ramps, and other areas of airports that are vital to the support and safety of aircraft operations. Timely pavement maintenance repair and major rehabilitation of these pavements will support the airport in operating safely, efficiently, economically and without excessive down time.

The Florida Department of Transportation (FDOT) Central Aviation and Spaceport Office implemented the Statewide Airfield Pavement Management Program (SAPMP) in 1992. In 2012, the FDOT Central Aviation and Spaceport Office selected a team led by Kimley-Horn and Associates, Inc. and including Penuel Consulting, LLC and Roy D. McQueen & Associates, LTD, to provide services in support of the Central Aviation and Spaceport Office Program Manager. The continued evaluation and update of the existing SAPMP is to be completed over fiscal years 2013 through 2015.

This individual airport airfield pavement evaluation report discusses the work performed, a summary of findings, condition analysis results, and recommendations for maintenance repair and major rehabilitation planning associated with the SAPMP update. It also briefly describes the procedures used to ensure that the appropriate engineering and scientific standards of care, quality, budget, schedules, and safety requirements were implemented during the performance of this work.

1.1 Purpose of Pavement Evaluation Report

The purpose of this Airfield Pavement Evaluation Report is to:

- Briefly describe the SAPMP goals, procedures, and responsibilities of the program's participants.
- Provide a technical explanation on pavement management principles, standard practices, objectives, and benefits of implementation.
- Outline procedures used to coordinate, collect, evaluate and report pavement inspection results at this airport.
- Analyze and utilize condition results for the development of maintenance, repair, and major rehabilitation based on pavement performance trends.

1.2 FDOT Statewide Airfield Pavement Management Program

In 1992, the FDOT implemented the SAPMP to improve the knowledge of pavement conditions at public airports in the Florida Airports System, identify maintenance and rehabilitation needs at each airport, automate pavement infrastructure information management, and establish standards to address future needs. The 1992 SAPMP implementation provided the FDOT and the participating airports valuable information for establishing and performing timely and appropriate pavement rehabilitation.

During the 1992-1993 implementation and again during the 1998-1999 updates; the SAPMP performed the development with proprietary software for pavement

management system analysis. This development allowed for the creation of pavement management database file system populated with airport attributes and condition data. The pavement management database was used to establish maintenance, repair, and rehabilitation (M&R) policies, M&R budget costs, and the development of recommendations for performing routine pavement preservation maintenance. This system, known as AIRPAV, was initially developed during the 1992-1993 SAPMP implementation for the analysis of distress data. The AIRPAV system was used again in the 1998-1999 SAPMP update.

In 2004, the SAPMP update included the review of the AIRPAV software compared to other industry available non-proprietary software packages. As a result of this review, MicroPAVER was selected for implementation of the system update. MicroPAVER was developed by the U.S. Army Corps of Engineers Construction Engineering Research Laboratory for the purpose of pavement management. Data from the 1998-1999 FDOT SAPMP update, which was built upon the initial 1992-1993 implementation of AIRPAV, was reviewed and converted to be compatible with the MicroPAVER system. This data conversion included all documented pavement facility, classification, type, history, geometry, PCI condition data and pertinent attributes gathered from airport feedback at the time. This information was used to develop the inventory of each participating airport's pavement facilities in a consistent format. This was the development of Airfield Pavement Network Definition Exhibits. These inventory exhibits visually depicted the branch, section, and sample units that were based upon the pavement construction history and composition information provided by each airport.

In 2006-2008, the SAPMP was updated again with continued use of the MicroPAVER system. Based on the distress data collected, a maintenance repair and major rehabilitation planning program was developed for each airport. As part of this SAPMP update, the procedures for the inspection and the collection of the pavement distress data were documented, and an interactive website (http://www.dot.state.fl.us/aviation/pavement.shtm) was established for input of data.

In 2010-2012, the SAPMP was updated using new GPS integrated technology to digitally collect pavement distress data. Interactive GIS map files were developed from updated Airfield Pavement Network Definition Maps to aid pavement condition inspectors in the collection of sample distress data. The data collected was utilized to develop pavement performance models to predict future pavement PCI values and make recommendations for major rehabilitation.

Currently, airports participating in the Airport Improvement Program (AIP) Grant Program are required by the Federal Aviation Administration (FAA) to develop and implement a pavement maintenance program to be eligible for funding (FAA Advisory Circular 150/5380-6C Guidelines and Procedures for Maintenance of Airport Pavements). This program requires detailed inspection of airfield pavement conditions by trained personnel. The inspections are required to be performed at least once a year or every three years, if the pavement is inspected in accordance to the PCI survey procedure (such as ASTM International D 5340 Standard Test Method for Airport Pavement Condition Index Surveys). The previous 2010-2012 SAPMP update utilized the ASTM D 5340-04 released in 2004, in lieu of the 2010/2011 edition, in order to maintain consistent database integrity and benefit of pavement performance models from previous inspections.

1.3 Organization

FDOT Central Aviation Office Program Manager

The FDOT Central Office Airport Engineering Manager serves as the Aviation and Spaceport Office Program Manager (ASO-PM) for the SAPMP. The ASO-PM monitors the work performed by the Consultant. The ASO-PM has review and approval authority for each program task and manages the day-to-day details of the SAPMP and the pertinent updates.

The ASO-PM reports updates and milestones to the FDOT State Aviation and Spaceport Manager and Development Administrator.

Consultant

The Consultant, Kimley-Horn and Associates, Inc. and their team consisting of Penuel Consulting, LLC and Roy D. McQueen & Associates, LTD, provides technical and administrative assistance to the ASO-PM during the execution of the update to the SAPMP. The efforts include updating the airport pavement inventory data, performing the condition survey inspections, evaluating the airfield pavement conditions and updating the SAPMP based upon procedures outlined in the FAA Advisory Circular 150/5380-6C Guidelines and Procedures for Maintenance of Airport Pavements and ASTM D 5340.

Airport Role

The airports are the ultimate beneficiary for each condition survey inspection performed at their respective airfields as part of the SAPMP. The individual airports will be provided final deliverables prepared by the Consultant that have been reviewed and approved by the ASO-PM. The airport should have provided a

current Airport Layout Plan (ALP) to the Consultant and, if they participated in the previous SAPMP, indicate any construction activity that was performed since the previous inspections.

FDOT District Offices

The seven FDOT District Offices, specifically the Aviation Representatives, provide vital support to the SAPMP update and the ASO-PM. Each District supports the SAPMP's on-going efforts by providing representative construction trend costs and practices through the Florida Airports System. Each District Office receives copies of individual Airfield Pavement Evaluation Reports for the airport facilities located within their respective districts.

1.4 Introduction to Pavement Types and Pavement Management

Pavement Basics

A pavement is a prepared surface designed to provide a continuous smooth ride at all taxi, takeoff, and landing speeds and to support an estimated amount of traffic loading for a certain number of years. Pavements are composed of a combination of constructed layers of subgrade soils, subbases, base course material, and surface level courses. There are two primary types of pavements:

- Flexible Pavement, composed of bituminous asphalt concrete (AC) surface, base, and subbase layers.
- Rigid Pavement, composed of Portland Cement Concrete (PCC) surface, base, and subbase layers.

Both pavement types use a combination of layered materials and thicknesses in order to support the traffic loads (both magnitude and repeated application) and protect the underlying subgrade soil. Flexible pavements dissipate applied loads from layer to layer until the load magnitude is small enough to be supported by the subgrade soil. In rigid pavements, the PCC layer supports the majority of the structural load applied, and the base or subbase layer is constructed to provide a smooth, level, and continuous platform that provides uniform support for PCC slabs.

A small percentage of airfield pavements within the Florida Airports System are composed of hybrid 'composite pavement' sections that may include both AC pavement and PCC pavement. The two known composite pavements are AC surface over PCC (APC) and PCC over AC (White Topping).

Due to the different nature of the pavement types, construction, and their materials; flexible and rigid pavements have different modes of failure and

fatigue. This results in varying deterioration and distress development. Understanding the mechanics and modes of failure of the pavement types assists the engineers in making timely, adequate and consistent observations, and in recommending economical maintenance repairs and major rehabilitation to the pavement structures at each airfield.

The Concept of an Airfield Pavement Management System

The SAPMP is a program that provides the Florida Airports System an opportunity to implement and/or maintain a proactive Airfield Pavement Management System (APMS) in a consistent manner at a regular schedule. The SAPMP Airfield Pavement Management System consists of pavement inventory, pavement construction and history, condition survey inspections, pavement performance modeling, maintenance recommendations, and major rehabilitation planning. The various elements of the APMS are used by experienced engineers to identify critical pavements, make pavement preservation or rehabilitation recommendations, and approximate pavement performance. The APMS as a whole is used by an airport's stakeholders, managing agencies, engineers, and planners as a tool in decision making for future project planning, budgeting, and scheduling of activities for its airfield pavement infrastructure.

A benefit of an active APMS is it provides an understanding of an airport's pavement performance trends for the purpose of project planning. Based on the performance trend of their pavements, an airport can schedule pavement maintenance and rehabilitation prior to when the pavement section has deteriorated to a condition that would require reconstruction. The use of pavement performance trends will help airports plan M&R and Rehabilitation projects in a manner and sequence that maximizes benefit and minimizes costs. Figure 1-1, which is based upon the FAA Advisory Circular 150 5380-7B Airport Pavement Management Program, illustrates how pavement generally deteriorates over time and the relative cost of rehabilitation and reconstruction throughout its life.

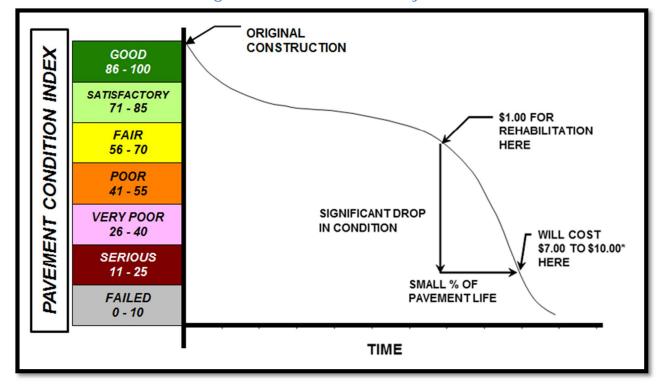


Figure 1-1: Pavement Life Cycle

Source: FAA Advisory Circular 150 5380-7B Airport Pavement Management Program

Note that during approximately the first 75% of a pavement's life, it performs relatively well. After that, however, it begins to deteriorate rapidly. The number of years a pavement stays in 'Good' and 'Satisfactory' conditions depends on how well it is proactively maintained. As the Figure 1-1 demonstrates, the cost of maintaining the pavement above critical condition before rapid deterioration occurs is much less compared to maintaining pavements after substantial deterioration has occurred.

Pavements tend to deteriorate at an accelerated rate when actual traffic loading exceeds the original design assumptions and when limited resources are available for maintenance and repair (M&R) efforts. Planned maintenance and rehabilitation, essentially preserving pavements and delaying condition deterioration, help airport managers, agencies, and engineers maximize the use of their budgets and prolong the life of their pavements. An APMS provides a tool to schedule planned maintenance and major rehabilitation efforts based on a consistent methodology of condition assessment. This consistent methodology of pavement condition assessment allows for the development of pavement performance models to help forecast future pavement conditions.

Part of the implementation of the APMS is the clear identification and inventorying of pavement infrastructure that needs to be managed specifically within the airport owner, manager, and agency responsibility. Another aspect of the APMS is development of maintenance, repair, and major rehabilitation policies that align with the expectations of pavement performance and are based on ability to fund the types of work identified. Once there is an understanding of the cause and extent of pavement distresses, appropriate maintenance and rehabilitation can be planned. By using representative construction costs based on historic bid trends; planning level budget costs can be developed on a multiyear duration.

Airfield Pavement Inspection Methodology for the SAPMP

Pavement condition assessment requires the application of professional judgments regarding the condition of the pavement. The SAPMP airfield pavement condition survey inspections assess pavement, comparing it to a set of standards in ASTM D 5340-12. As part of this update, SAPMP has adopted the changes made in updates to ASTM D 5340-12. These include the separation of Weathering and Raveling into two distinct flexible pavement distresses, and the addition of the Alkali-Silica Reaction distress for rigid pavement distresses. Additionally, the deterioration associated with the rigid pavement distress Scaling/Map Cracking has been modified which results in moving Map Cracking from Scaling to ASR. In the newest version of ASTM D 5340-12, there are two kinds of Shrinkage Cracking, Drying Shrinkage and Plastic Shrinkage. The difference between these two is that the depth of first one may extend through the entire depth of the slab while the thickness of the latter one normally does not extend very deep into the pavement's surface. Furthermore, the Plastic Shrinkage consists of two subcategories: Plastic shrinkage (caused by atmosphere) and Plastic shrinkage (caused by construction). Another kind of Map Cracking is listed under Plastic shrinkage that is caused by construction, as well as Crazing. This additional type of Shrinkage change in distress classification, as described in ASTM D 5340-12, may result in small variances in the PCI values from the previous inspection analysis.

The pavement condition surveys assess the functional condition of the pavement surface based on surface distresses as defined by the ASTM D 5340-12. Typically, deficiencies within a pavement structure will eventually reflect to the pavement surface as distresses described within ASTM D 5340-12. The SAPMP is specifically a visual evaluation and analysis based on the ASTM D 5340-12. The structural condition and relative support of the pavement layers can be directly quantified

using non-destructive deflection testing (NDT) as well as other in-depth engineering evaluation or sampling and testing methods.

For the SAPMP update, only visual surveys were performed. Further structural and geotechnical testing should be conducted to determine design level rehabilitation and/or reconstruction needs should the airport proceed to the design process.

In preparation for the PCI survey inspections, the airfield pavements for each airport are divided into branches, sections, and sample units as established by FAA Advisory Circular 150/5380-6C and ASTM D 5340. Further discussion of the process of inventorying and categorizing pavement facilities by use, composition, and history can be found in SECTION 2 AIRFIELD PAVEMENT NETWORK DEFINITION and PAVEMENT INVENTORY.

Sample units are uniformly divided areas of pavement that are defined for inspection. Sample unit sizes are approximately $5,000 \pm 2,000$ square feet for flexible AC pavements and 20 ± 8 slabs for rigid PCC pavements. Prior to conducting the field condition survey inspections, the sampling plan was developed for the airfield pavements based on updates to the previous inspection sampling based on the available knowledge of construction updates. The sample rate adopted for the SAPMP is depicted on Table 1-1.

Table 1-1: Sampling Rate Schedule for SAPMP PCI Survey Inspections

Flexible Pavements Asphalt Concrete					
Number of Sample Units in	Number of Sar	mple Units to Inspect Taxiways,			
Section		Aprons, Others			
1 - 4	1	1			
5 - 10	2	1			
11 - 15	3	2			
16 - 30	5	3			
31 - 40	7	4			
41 - 50	8	5			
≥ 51	20% but ≤ 20	10% but ≤ 10			

Rigid Pavements Portland Cement Concrete						
	Number of Sample Units to Inspect					
Number of Sample Units in Section	Runway	Taxiways, Aprons, Others				
1 - 3	1	1				
4 - 6	2	1				
7 - 10	3	2				
11 - 15	4	2				
16 - 20	5	3				
21 - 30	7	3				
31 - 40	8	4				
41 - 50	10	5				
≥ 51	20% but ≤ 20	10% but ≤ 10				

The sample units to be inspected were determined through a systematic random sampling technique to provide an unbiased representation of sample units for each pavement facility. The sample unit locations had been determined in such a way that they are distributed evenly throughout each defined pavement section area. In certain cases when no representative distresses are observed in the field, additional sample units were added.

The distress quantities and severity levels from each inspected sample unit are used to compute the PCI value and rating for each Section using the ASTM D 5340-12 and MicroPAVER (also known currently as PAVER) software. Figures 1-2 and 1-3 depict graphical representations of the color ranges associated with PCI values and ranges with a photograph of airfield pavement that exhibited the conditions for both flexible and rigid pavements respectively.

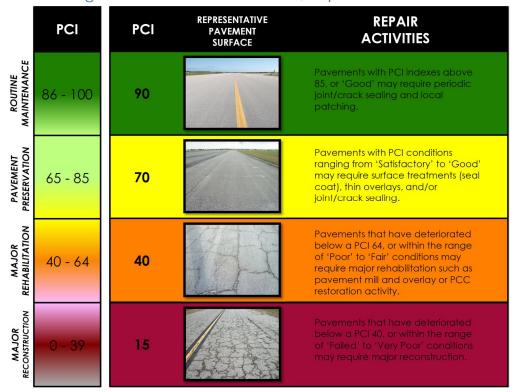


Figure 1-2: Flexible Pavement, Asphalt Concrete

REPRESENTATIVE PAVEMENT SURFACE REPAIR **PCI** PCI **ACTIVITIES** ROUTINE MAINTENANCE Pavements with PCI indexes above 85, or 'Good' may require periodic 86 - 100 90 joint/crack sealing and local PAVEMENT PRESERVATION Pavements with PCI conditions ranging from 'Satisfactory' to 'Good' 70 65 - 85 may require surface treatments, patches, and/or joint/crack sealing. MAJOR REHABILITATION Pavements that have deteriorated below a PCI 64, or within the range of 'Poor' to 'Fair' conditions may 40 40 - 64 require major rehabilitation such as Slab replacement and PCC restoration activity. MAJOR RECONSTRUCTION 15

Figure 1-3: Rigid Pavement, Portland Cement Concrete

Using the ASTM D 5340-12 standard seven qualitative ranges, the SAPMP provides a PCI value and a standard qualitative condition rating for the pavement facilities inspected.

2. AIRFIELD PAVEMENT NETWORK DEFINITION AND PAVEMENT INVENTORY

Peter O. Knight Airport (TPF) is served by two runways. Runway 4-22 is constructed of asphalt concrete pavement and is 100-ft wide by 3,405-ft long. Runway 18-36 is constructed of asphalt concrete pavement and is 75-ft wide by 2,688-ft long. Parallel Taxiway A and its connectors serve Runway 4-22. Parallel Taxiway F and its connectors serve Runway 18-36. The airport has T-Hangar and apron facilities on the central and eastern areas of the property. This airport is designated as a Regional Reliever airport and is located in District 7 of the Florida Department of Transportation.

It is important to note that the aforementioned runway data in addition to the remaining airfield pavement facilities geometric attributes may vary slightly from the geometry used in the condition exhibit in Appendix B and the major rehabilitation exhibit in Appendix F based on field measurements.

Peter O. Knight Airport opened in 1937 and was constructed by the Works Progress Administration. During World War II, the Airport was used as an auxiliary fighter landing field for nearby Army airfields such as Clearwater, Drew, and MacDill. The airport continues to serve small private planes, helicopters, and a few airships. The airport also has a seaplane basin.

2.1 Network Definition

The airfield pavements within each airport network are separated into manageable units within the FDOT SAPMP MicroPAVER database system, organizing pavement data by similar use and constructive history.

Branch and Section Identification

Each airport's airfield pavement network is generally subdivided into separate Branches (runways, taxiways, aprons/ramps, or others) that have distinctly different functional identifications and uses. Each Branch is further subdivided into Sections as defined by pavement location, composition, and construction history. A Section is typically understood to be a project level subdivision within a Branch feature. Sections are manageable units to organize data collection and are treated individually during the maintenance and major rehabilitation planning process. A pavement rank (primary, secondary, or tertiary) is assigned to each Section based on its importance and type of use to airport operations. The pavement rankings designated for each section at this airport were defined by

the previous SAPMP, unless changes were communicated by the airport. These Sections are further subdivided into condition survey sample units based on the methodology described in ASTM D 5340.

Airfield Pavement System Inventory and Network Definition Update

The Airfield Pavement System Inventory and Airfield Pavement Network Definition Exhibits are developed individually for each participating airport. Based on information requested of and provided by the airport, the airfield pavements are evaluated on designation updates, and recent or anticipated pavement construction activity. As mentioned previously, a Section is defined partially by its construction history of which is factored in the performance and condition of the pavement section.

The Airfield Pavement System Inventory Exhibit, Figure A-2 in Appendix A, is a snapshot of recent and anticipated airfield pavement construction activity communicated by the airport since the last SAPMP update. Construction activities identified include maintenance and repair activity, major rehabilitation, and airfield pavement expansion efforts. Maintenance and repair activity may include; surface treatments, crack sealing, patching, slab replacement, and others. Both maintenance and rehabilitation activities are identified at the pavement section level. This type of work may result in an increase in overall Section PCI since the last inspection. Major rehabilitation efforts may include; asphalt milling and overlay, and full depth pavement reconstruction. This type of effort will result in a resetting of the pavement section PCI value to 100 due to the nature of the work. Lastly, airfield pavement expansions are accounted for as new inventory and assigned a section PCI of 100. Typically the new pavement sections are not inspected due to its condition; however these pavements are incorporated into the SAPMP pavement database. When possible, these changes are reflected in the Airfield Pavement Network Definition Exhibit, in Appendix A, prior to the field inspection. The updates are typically discussed and confirmed with airport personnel at the beginning and end of condition survey inspections to ensure accuracy.

The Airfield Pavement Network Definition Exhibit depicts the airport's pavement limits with Branch and Section delineations. This exhibit also includes the subdivision on Section areas into sample units and is used to identify those sample units that are to be inspected. The previous SAPMP Airfield Pavement Network Definition Exhibits were used as a base. Updates and information provided by each airport was reviewed and the exhibits were revised appropriately. Characteristics that are considered include; airfield configuration, branch Page | 20

designations (magnetic declination, Airport Layout Plan updates) and pavement composition. The exhibit serves not only as a primary guide for the airfield inspectors but also allows specific distresses found in the re-inspection report to be geographically located.

Due to recent and anticipated construction efforts; pavement area sections may have been consolidated or created which will affect the total number of sample units to be inspected based upon the methods described in ASTM D 5340 and from the sampling rate schedule. Table 2-1 summarizes the recent and anticipated airfield pavement construction efforts communicated by the airport.

Construction Year	Section Location	Work Type/Pavement Section		
2011	Taxiway B and D and apron	ASPHALT PAVEMENT RECONSTRUCTION		
2011	TAXIWAY G AND E AND T-HANG E	NEW AC: 2" AC (TYPE S-1), 6" LIMEROCK (P-211), 12" STAB. SUB BASE (P-160)		
2013	RUNWAY 4-22 AND TAXIWAY A	CRACK SEALING		

Table 2-1: Previous and/or Anticipated Airfield Pavement Construction

Airfield Pavement Network Definition & Geographic Information System (GIS)

As part of this SAPMP update, geographic information system (GIS), global positioning system (GPS), and digital data collection were integrated into the Pavement Inspection Methodology at each airport. Using AutoCAD Civil 3D, ArcMap, ArcPad, and FDOT Survey and Mapping Office Aerial Photography; digital navigation maps have been developed for each airport to represent the SAPMP pavement inventory attributes. These navigation maps were used with field data tablets to assist survey teams as they performed condition inspections by navigating pavement infrastructure and collecting distress data.

2.2 Pavement Inventory

The detailed pavement inventory database was updated to reflect the updates to the Airfield Pavement Network Definition Exhibit, in Appendix A, and field inspection results. Table 2-2 and Figure 2-1 provides a summary of the pavement inventory attributes at Peter O. Knight Airport for this SAPMP update.

Table 2-2: Pavement Inventory Summary

Table 2 2.1 avernerit inventory sammary					
Airfield Pavement Network Definition					
Number of Branches	14				
Number of Sections		33			
Sample Units		71			
Airfield	Pavement l	Jse			
Use	Area (SF)	Relative Area (%)			
Runway	551,817	44%			
Taxiway	518,638	41%			
Apron	189,710	15%			
Total =	1,260,164	100%			
Airfield I	Pavement T	ype			
Туре	Area (SF)	Relative Area (%)			
Asphalt Concrete (AC)	285,864	23%			
Asphalt Overlay (AAC)	974,300	77%			
Portland Cement Concrete (PCC)	0	0%			
AC over PCC (APC)	0	0%			

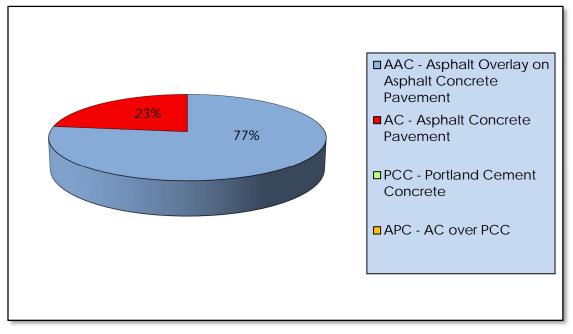


Figure 2-1: Airfield Pavement Type

Specific details to each Branch and Section such as; name, geometry, age, rank, surface type, and construction history are provided in Table 2-3.

Table 2-3: Airfield Pavement Inventory Details

Donale News	Door of ID	Section	True	Section	Surface	Last	Total	Total
Branch Name	Branch ID	ID	Area (SF)	Rank	Туре	Const. Date	Samples Inspected	Samples
RUNWAY 18-36	RW 18-36	6205	191,017	S	AAC	1/1/2008	12	51
RUNWAY 4-22		6110	17,800	Р	AAC	1/1/2007	1	4
RUINWAY 4-22	RW 4-22	6110	17,000	P	AAC	1/1/2007	l l	4
RUNWAY 4-22	RW 4-22	6105	310,500	Р	AAC	1/1/2001	14	63
RUNWAY 4-22	RW 4-22	6103	32,500	Р	AC	1/1/2007	2	7
APRON	AP RU	5115	16,251	Р	AC	1/1/2007	1	5
APRON	AP RU	5110	4,386	Р	AAC	1/1/2008	1	1
APRON	AP RU	5105	3,154	Р	AAC	1/1/2008	1	1
APRON	AP	4140	14,967	Р	AC	1/1/1986	1	4
APRON	AP	4110	150,952	Р	AAC	1/1/2011	4	34
TAXILANE TO EAST HANGARS	T/L HANG	800	29,573	Р	AC	1/1/2011	1	6
TAXIWAY G	TW G	750	12,333	Р	AC	1/1/2011	1	3

Branch Name	Branch ID	Section ID	True Area (SF)	Section Rank	Surface Type	Last Const. Date	Total Samples Inspected	Total Samples
TAXIWAY TO T- HANGARS	TW T-HANG	705	72,024	Р	AC	1/1/1964	3	16
TAXIWAY E	TW E	650	5,471	Р	AAC	1/1/2008	1	1
TAXIWAY A	TW A	630	4,673	Р	AC	1/1/2007	1	1
TAXIWAY F	TW F	610	9,627	Р	AAC	1/1/2008	1	2
TAXIWAY F	TW F	605	88,517	Р	AAC	1/1/2008	4	24
TAXIWAY E	TW E	515	4,952	Р	AC	1/1/2011	1	1
TAXIWAY E	TW E	510	11,126	Р	AC	1/1/1965	1	3
TAXIWAY E	TW E	505	2,353	Р	AAC	1/1/2005	1	1
TAXIWAY D	TW D	425	5,338	Р	AAC	1/1/1992	1	1
TAXIWAY D	TW D	420	41,270	Р	AAC	1/1/2011	2	10
TAXIWAY CENTER	TW CENTER	325	33,247	Р	AC	1/1/2008	1	6
TAXIWAY CENTER	TW CENTER	320	11,536	Р	AC	1/1/2008	1	3
TAXIWAY CENTER	TW CENTER	315	11,056	Р	AC	1/1/2008	1	4
TAXIWAY C	TW C	310	16,840	Р	AC	1/1/1965	2	4
TAXIWAY C	TW C	305	7,165	Р	AAC	1/1/2010	1	2
TAXIWAY B	TW B	205	11,793	Р	AAC	1/1/2011	1	3
TAXIWAY B	TW B	150	4,673	Р	AAC	1/1/1992	1	1
TAXIWAY A	TW A	120	5,876	Р	AAC	1/1/2008	1	2
TAXIWAY A	TW A	115	11,155	Р	AAC	1/1/2008	1	3
TAXIWAY A	TW A	105	103,252	Р	AAC	1/1/1992	4	29
TAXIWAY A	TW A	104	9,170	Р	AC	1/1/2007	1	3
TAXIWAY A	TW A	103	5,616	P	AC	1/1/2007 100 by MicroPA	1	1

Note: If new construction, then survey date = last construction date and PCI is set to 100 by MicroPAVER.

^{*} Sections not surveyed due to reasons such as re-sectioning, no escort, not accessible at the time of survey. Please refer to Section 3 for discussion on the updates to the ASTM D 5640 that may affect PCI in comparison to previous program update.

3. AIRFIELD PAVEMENT CONDITION

Airfield pavement distresses and condition were surveyed in accordance with the methods outlined in FAA Advisory Circular 150/5380-6C and ASTM D 5340-12. These procedures define distress type, severity, and quantity for sampling areas within each defined pavement section area to analyze and determine the PCI value and condition rating.

The program has been updated from ASTM D 5340-04, released in 2004, to ASTM D 5340-12, released in 2013, for this SAPMP update. The primary updates include the separation of certain distress types and the addition of new types with corresponding changes to PCI calculation. These changes in distress classification may result in small variances in the PCI values from the previous inspection analysis.

Below is a brief description of the changes to the distresses presented in the ASTM D 5340 methodology and a table summarizing the deduction affected.

- a) Flexible Asphalt Concrete Pavement distresses for airfield pavements: The previous methodology which featured "(52) Weathering and Raveling" distress has been separated into two distresses "(52) Raveling" and "(57) Weathering". Previously, areas that were recorded as "Weathering and Raveling" were considered as one distress with a high deduction. Based on the updated methodology, in certain situations where "Weathering" only exists and does not meet the definition of "Raveling", the PCI deduction is not as high as the former "Weathering and Raveling". Therefore, areas identified only as "(57) Weathering" based on current ASTM standards, which were previously identified as "(52) Weathering and Raveling", may be subject to an improvement in PCI. In instances where pavement PCI has increased due to this update, it is not due to an improvement in actual condition, however indicative of the adjusted distress deterioration effects.
- b) Rigid Portland Cement Concrete Pavement distresses for airfield pavements: The previous methodology defined "(70) Scaling" as a distress that consisted of surface deterioration caused by construction defects, material defects, and environmental factors. The distress included Alkali-Silica Reaction, also known as ASR. The current methodology has separated Alkali-Silica Reaction as a distress identified as "(76) Alkali-Silica Reaction / ASR". As a result the previous "(70) Scaling" numerical deduction contribution to the PCI has been reduced. Previous inspections

that recorded "(70) Scaling", and currently do not exhibit "(76) Alkali-Silica Reactivity / ASR" may potentially see an increase in PCI. Additionally, (73) Shrinkage Cracks has been redefined as (73) Shrinkage Cracking. Shrinkage Cracking is characterized in two forms; drying shrinkage and plastic shrinkage. Drying shrinkage occurs over time as moisture leaves the pavement, it develops when hardened pavement continues to shrink as excess water not needed for cement hydration evaporates. It forms when subsurface resistance to the shrinkage is present and may extend through the entire depth of the slab. Plastic shrinkage develops when there is rapid loss of water in the surface of recently placed pavement or can form from over finishing/overworking of the pavement during construction. These shrinkage cracks appear as a series of inter-connected hairline cracks, or pattern cracking, and are often observed throughout the majority of the slab surface. This condition is also referred to as map cracking or crazing.

	Distress Updates to Reflect ASTM 5340-12					
Use and Surface Type	Old 5340-04 Distress	New Distress	Deduct Curve			
	(52) Weathering & Raveling - Low	(52) Raveling - Low	No Change			
	(52) Weathering & Raveling - Medium	(52) Raveling - Medium	No Change			
AC/AAC/APC	(52) Weathering & Raveling - High	(52) Raveling - High	No Change			
Airfield	N/A	(57) Weathering - Low	New			
	N/A	(57) Weathering - Medium	New			
	N/A	(57) Weathering - High	New			
	(70) Scaling - Low	(70) Scaling - Low	New			
	(70) Scaling - Medium	(70) Scaling - Medium	New			
PCC	(70) Scaling - High	(70) Scaling - High	New			
Airfield	N/A	(76) Alkali Silica Reaction - Low	New			
	N/A	(76) Alkali Silica Reaction – Medium	New			
	N/A	(76) Alkali Silica Reaction - High	New			

3.1 Inspection Methodology

A pavement condition survey inspection is performed by measuring the amount and severity of defined pavement distresses observed within the boundaries of sample units. These distresses, as defined by ASTM D 5340, are generally caused Page | 26

by traffic fatigue loading, exposure to climate and elements, and other airfield specific factors. This data is collected by field personnel experienced in pavement condition survey inspection. Data collection is then transferred into the FDOT MicroPAVER database system. MicroPAVER (also known as PAVER) is used to calculate PCI values using the methodology described in ASTM D 5340-12. The values are calculated for each sample and extrapolated on a Section level to determine an area-weighted PCI value ranging from 0 to 100 and one of seven condition ratings. Tables 3-1 and 3-2 describe the distresses as defined by the ASTM D 5340-12 and adopted for the SAPMP procedures.

Table 3-1: Airfield Pavement Distresses for Asphalt Concrete

Code	Distress	Primary Mechanisms
41	Alligator Cracking	Load / Fatigue Failure
42	Bleeding	Construction Quality/ Mix Design
43	Block Cracking	Climate / Age
44	Corrugation	Load / Construction Quality
45	Depression	Subgrade Quality
46	Jet Blast	Aircraft
47	Joint Reflection - Cracking	Climate / Prior Pavement
48	Longitudinal/Transverse Cracking	Climate / Age
49	Oil Spillage	Aircraft / Vehicle
50	Patching	Utility / Pavement Repair
51	Polished Aggregate	Repeated Traffic Loading
52	Raveling	Climate / Load
53	Rutting	Repeated Traffic Loading
54	Shoving	PCC Pavement Growth / Movement
55	Slippage Cracking	Load / Pavement Bond
56	Swelling	Climate / Subgrade Quality
57	Weathering	Climate

Source: U.S. Army CERL, FDOT Airfield Inspection Reference Manual

Table 3-2: Airfield Pavement Distresses for Portland Cement Concrete

Code	Distress	Primary Mechanisms
61	Blow-up	Climate / Alkali Silica Reaction
62	Corner Break	Load Repetition / Curling Stresses
63	Linear Cracking	Load Repetition / Curling Stresses / Shrinkage Stresses
64	Durability Cracking	Freeze-Thaw Cycling
65	Joint Seal Damage	Material Deterioration / Construction Quality
66	Small Patch	Pavement Repair
67	Large Patch/Utility Cut	Utility / Pavement Repair
68	Popout	Freeze-Thaw Cycling
69	Pumping	Load Repetition / Poor Joint Sealant
70	Scaling/Crazing	Construction Quality / Freeze- Thaw Cycling
71	Faulting	Load Repetition / Subgrade Quality
72	Shattered Slab	Overloading
73	Shrinkage Cracking	Construction Quality / Load
74	Joint Spalling	Load Repetition / Infiltration of Incompressible Material
75	Corner Spalling	Load Repetition / Infiltration of Incompressible Material
76	Alkali-Silica Reaction	Construction Quality / Climate

Source: U.S. Army CERL, FDOT Airfield Inspection Reference Manual

3.2 Airfield Pavement Condition Index Rating Results

From the condition survey inspection performed in 2014 at Peter O. Knight Airport, the overall weighted average PCI value is 74 representing a condition rating of Satisfactory.

The airport exhibited overall pavement distresses associated with climate, age, and subgrade quality. The airfield is composed of asphalt concrete pavement. Common pavement distresses observed include longitudinal/transverse cracking, weathering, depression, swelling, block cracking, and raveling.

Runway 4-22 is paved with AC and AAC pavement sections. The ends of the runway were paved in 2007 and are in Good Condition. The central section is older and is in Fair condition with a PCI of 58. Typical distresses in the central

section include low and medium severity longitudinal/transverse cracking, low and medium severity raveling, low severity swelling, low severity patching, and low severity depression. These are climate, age, and subgrade quality related distresses.

Runway 18-36 is paved with AAC pavement sections. The runway is in Satisfactory condition with a PCI of 85. Typical distresses include low severity longitudinal/transverse cracking, low severity raveling, and low severity weathering.

Parallel Taxiway A is generally in Fair condition with a PCI of 60. The taxiway connectors are generally in Satisfactory to Good condition. Typical distresses include low severity longitudinal/transverse cracking, low severity weathering, low severity depression, and low severity raveling. These are climate, age, and subgrade quality related distresses.

Parallel Taxiway F is generally in Good condition with a PCI of 89. Typical distresses include low severity longitudinal/transverse cracking and low severity weathering. These are climate and age related distresses.

The remaining taxiways and aprons vary in their conditions from Poor to Good, with most of the pavements in Satisfactory to Good condition. The Taxiway T-Hangars were in Poor condition with a PCI of 53. The pavement was characterized by frequent depressions, raveling, and longitudinal/transverse cracking. These are subgrade quality, climate, and age related distresses. The south Apron was generally in Satisfactory condition. Typical distresses on the apron include depression, raveling, and weathering. However, these distresses were not found in great quantities.

Appendix B contains Table B-1 which summarizes the Section Condition Values and an Airfield Pavement Condition Index Rating Exhibit, Figure B-1, which depicts the PCI results by Section. Appendix C contains MicroPAVER reports of PCI results by Branch and Section. Appendix H includes the most current detailed distress data generated by MicroPAVER for each inspected sample unit for this update.

The pavement condition at Peter O. Knight Airport is represented in Figure 3-1 in accordance with the condition categories and PCI scale referenced in ASTM D 5340. Further detail is provided in Table 3-3 which describes the breakdown of the airport's airfield conditions according to area and use.

Figure 3-1: Airfield Pavement Condition Index Rating Summary

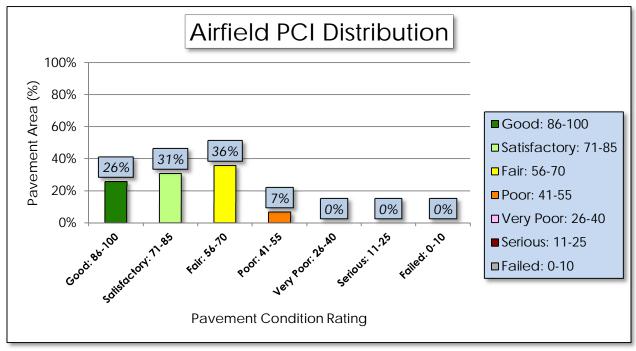
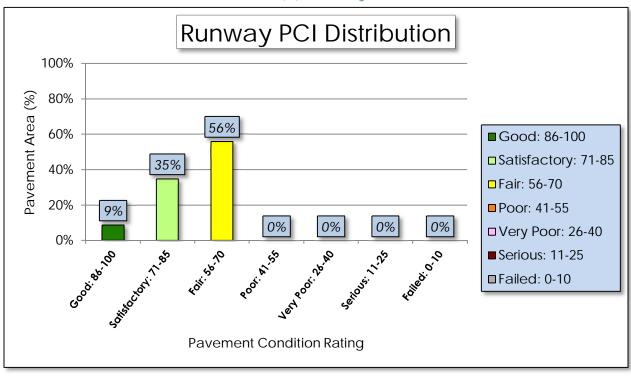


Table 3-3: Pavement Condition Index Rating Summary


Airfield Pavement Use					
Use	Average Area- Weighted PCI	Condition Rating			
Runway	70	FAIR			
Taxiway	75	SATISFACTORY			
Apron	82	SATISFACTORY			
	Condition Area				
Condition Rating	Area (SF)	Relative Area (%)			
Good	323,426	26%			
Satisfactory	385,237	31%			
Fair	457,298	36%			
Poor	94,202	7%			
Very Poor	-	0%			
Serious	-	0%			
Failed	-	0%			

Approximately 57% of the airfield network is in Good and Satisfactory condition, while 7% of the network is in a Poor to Failed condition. Table 3-3 provides a breakdown of total area for each pavement by condition rating. Figures 3.2 a, b, c depict the condition rating of the airfield pavement by Branch Use. Photographs taken during the condition survey inspection are included in Appendix G. The photographs included are intended to be representative of the distress observed.

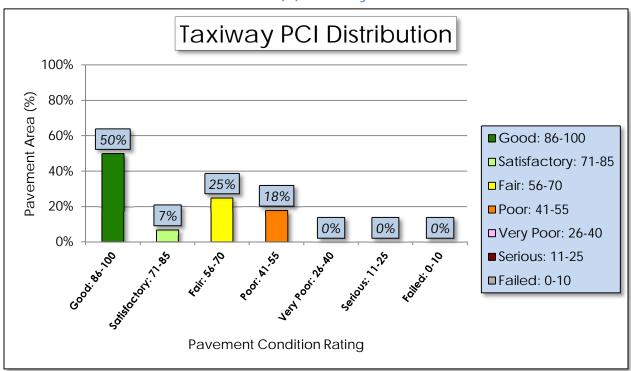
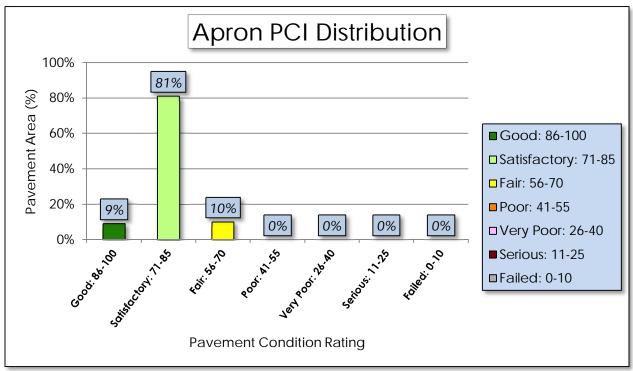


Figure 3-2: Percentage of Pavement Area by Condition Rating by Use

(a) Runway



(b) Taxiway

(c) Apron

PAVEMENT PERFORMANCE

Pavement performance models are developed from the distress data collected for the SAPMP for the Florida Airports System. This data is consolidated in a database and organized by inspection date, pavement type, age, pavement use, and airport category. The pavement performance models are used to develop broad prediction models, also known as pavement condition deterioration curves.

The consolidation of the Florida Airports System's pavement infrastructure within the FDOT SAPMP is based on data that has been collected in a consistent method of measurement. The historic pavement condition, or performance trend, has been compiled throughout the system with data from the inception of the SAPMP. This data is processed into models that have been analyzed and developed into prediction curves based upon pavement characteristics. These characteristics include; climate, construction material, and operations. Each model has been developed based on the following criteria:

AIRPORT TYPE (Primary, Regional Reliever, or General Aviation)

>FACILITY USE (Runway, Taxiway, or Apron)

>>FACILITY SURFACE TYPE (AC, AAC, APC, or PCC)

The historic trends of pavement performance at Florida airport facilities for all performance models are consolidated within the program database. This information is utilized in the prediction of pavement performance based on the current PCI determined from the inspections that took place between 2013 and 2015. Major rehabilitation is planned based on the predicted PCI. The intent of this is for both the individual airport and the FDOT District personnel to be aware of anticipated major rehabilitation work based on condition.

Each airport's airfield pavement section condition, for a given inspection year, is one data point that was used as the basis of each performance trend using a performance model based on pavements of similar background. Figures 4-1, 4-2, and 4-3 represent the pavement performance prediction at Peter O. Knight Airport based on pavement use. Each figure depicts the FDOT recommended Minimum Service Level PCI value for each facility use.

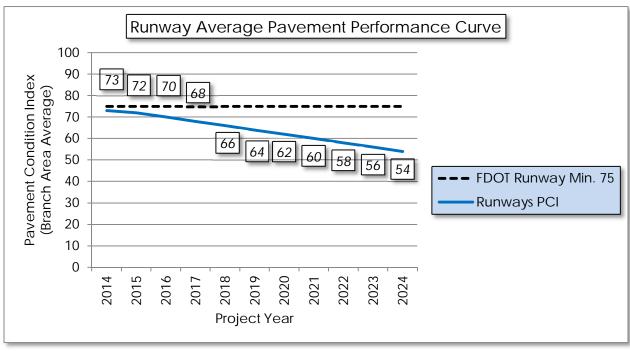
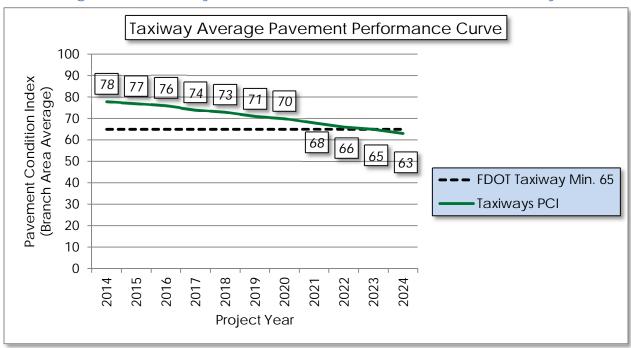



Figure 4-1: Runway Pavement Performance Prediction Summary

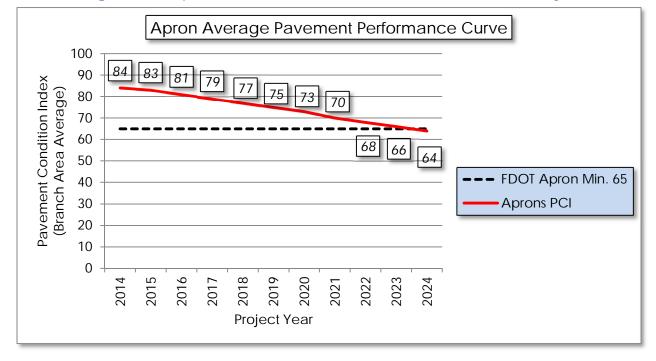


Figure 4-3: Apron Pavement Performance Prediction Summary

Pavement performance modeling to predict the future PCI is primarily done to predict PCI at the Section level for the purpose of planning Major Rehabilitation work. In Appendix D, Table D-1 represents the predicted area-weighted PCI by Section for the airport's airfield pavement infrastructure.

5. AIRFIELD PAVEMENT MAINTENANCE POLICIES AND COSTS

5.1 Policies

Airfield Pavement Maintenance policies are guidance on pavement construction methods used to develop, maintain, repair, and rehabilitate pavement infrastructure based on distresses encountered during the condition surveys.

Maintenance refers to the repair and preservation-type activities that are applied locally to specific distress types on the pavement. These activities for the SAPMP are considered preventative and corrective in nature and are highly recommended to help improve pavement performance and extend pavement life. The SAPMP maintenance policies are based on the FAA Advisory Circular 150/5380-6C and guidance provided in the FDOT Airfield Pavement Repair Manual.

For the purpose of the SAPMP; the maintenance repair needs that are identified and quantified are based solely on the pavement distresses observed and recorded at the time of the inspection. Based on a specific distress type and severity observed, a particular repair work type is recommended and quantified based on the extrapolated section distresses. The repair program identified is specific to the current distresses. Future maintenance planning budgets are based on this initial determination. Tables 5-1 and 5-2 provide the list of maintenance activities incorporated into the SAPMP MicroPAVER database to treat specific distress types and severities.

Table 5-1: Recommended AC, AAC, and APC Maintenance and Repair Policy

Surface Type	Distress Code	Distress Name	Severity	Maintenance Work Type	Work Unit
	41	Alligator Cracking	L, M, H	Full Depth Pavement Patch	Square Feet
	42	Bleeding	N/A	Partial Depth Pavement Patch	Square Feet
	43	Block Cracking	L	Seal Coat Treatment	Square Feet
	43	Block Cracking	M, H	Full Depth Pavement Patch	Square Feet
	44	Corrugation	L, M, H	Full Depth Pavement Patch	Square Feet
	45	Depression	L, M, H	Full Depth Pavement Patch	Square Feet
	46	Jet Blast Erosion	L, M, H	Full Depth Pavement Patch	Square Feet
	47	Joint Reflection Cracking	L	Crack Sealing	Linear Feet
(1)	47	Joint Reflection Cracking	M, H	Full Depth Pavement Patch	Square Feet
ncret	48	Longitudinal/Transverse Cracking	L, M, H	Crack Sealing	Linear Feet
ole Asphalt Con (AC, AAC, APC)	49	Oil Spillage	L, M	Seal Coat Treatment	Square Feet
Aspha C, AA	49	Oil Spillage	Н	Full Depth Pavement Patch	Square Feet
Flexible Asphalt Concrete (AC, AAC, APC)	50	Patch and Utility Patching	M	Full Depth Pavement Patch	Square Feet
H 3E	50	Patch and Utility Patching	Н	Full Depth Pavement Patch	Square Feet
	51	Polished Aggregate	L, M, H	Slurry Seal Coat Treatment	Square Feet
	52	Raveling	L, M	Slurry Seal Coat Treatment	Square Feet
	52	Raveling	Н	Partial Depth Pavement Patch	Square Feet
	53	Rutting	L, M, H	Full Depth Pavement Patch	Square Feet
	54 Shoving		L, M, H	Grinding / Removal	Square Feet
	55	Slippage Cracking	L, M, H	Full Depth Pavement Patch	Square Feet
	56	Swelling	M, H	Full Depth Pavement Patch	Square Feet
	57	Weathering	M, H	Seal Coat Treatment	Square Feet

Table 5-2: Recommended PCC Maintenance and Repair Policy

Surface Type	Distress Code	Distress Name	Severity	Maintenance Work Type	Work Unit	
	61	Blowup	L, M, H	Slab Replacement / Full Depth Patch	Square Feet	
	62	Corner Break	L, M, H	Partial Slab Full Depth Patch - PCC	Square Feet	
	63	Longitudinal/Transverse/Diagonal Cracking	Н	Crack Sealing - PCC	Linear Feet	
	64	Durability Cracking	M, H	Slab Replacement / Full Depth Patch	Square Feet	
	65	Joint Seal Damage	L, M, H	Joint Seal Repair (Local)	Linear Feet	
	66	Patching, Small	M, H	Partial Slab Full Depth Patch - PCC	Square Feet	
ment	67	Patching, Large	M, H	Partial Slab Full Depth Patch - PCC	Square Feet	
Rigid Pavement (PCC)	69	Pumping	L, M, H	Slab Stabilization / Slab Jacking	Square Feet	
Rig	70	Scaling/Map Cracking/Crazing	L, M	Micro-mill and Seal - PCC	Square Feet	
	70	Scaling/Map Cracking/Crazing	H Slab Replacement / Full Depth Patch		Square Feet	
	71	Settlement / Faulting	L	Micro-mill and Seal - PCC	Square Feet	
	71	71 Settlement / Faulting		Slab Stabilization / Slab Jacking	Square Feet	
	72	Shattered Slab	L, M, H	Slab Replacement / Full Depth Patch	Square Feet	
	73	Shrinkage Cracks	N/A	Crack Sealing - PCC	Linear Feet	
	74	Longitudinal/Transverse Joint Spalling	L, M, H	Partial Patch - PCC	Square Feet	

Surface Type	Distress Code	Distress Name	Severity	Maintenance Work Type	Work Unit
	75	Corner Spalling	L, M, H	Partial Patch - PCC	Square Feet
	76	Alkali-Silica Reaction	L	Seal Coat Treatment	Square Feet
	76 Alkali-Silica Reaction 76 Alkali-Silica Reaction		M	Micro-mill and Seal - PCC	Square Feet
			Н	Slab Replacement / Full Depth Patch	Square Feet

Though proactive pavement maintenance and preservation is highly recommended in an APMS; it is recognized that pavement that has deteriorated below a certain PCI would benefit more from major rehabilitation rather than localized maintenance and repair work. Major rehabilitation is recommended when the pavement condition decreases below a critical point such that the deterioration is extensive or the rate of deterioration is so great that maintenance repair efforts are no longer cost-efficient. This critical point is called "Critical PCI". The critical PCI levels for different pavement and branch types were established by the FDOT and were used in this update to develop a maintenance and major rehabilitation plan for the airport. Sections that are above the "Critical PCI" levels will be recommended for maintenance, repair, and preservation treatments, assuming there are no significant load-related distresses. For those Sections below the Critical PCI, the recommended action will consist of major rehabilitation work. This approach is used for the Section's Current PCI value and the predicted PCI value for future rehabilitation.

The FDOT has recommended minimum service level PCI for airports based on pavement facility use, airport type, and expected loading frequency. This minimum service level PCI is recommended to ensure the pavement provides a safe operational surface and efficiently uses maintenance and rehabilitation budgets. Separately, the Critical PCI is a value based on historic pavement performance trends and costs. It is at a PCI value of 65, for most airports, at which major rehabilitation is recommended over maintenance level efforts. Table 5-3 identifies the FDOT recommended PCI by use and the critical PCI value for the most important pavements at the airport. This is due to the condition of the pavement and the cost effectiveness of the work. A very important concept of a good pavement management system is the proactive preservation of

pavements that are above Critical PCI condition. Conversely, allowing pavement to deteriorate beyond maintenance and performing "worst first" major rehabilitation may cost much more over the life of a pavement.

Table 5-3: Critical and Minimum Service Level PCI for Regional Reliever Airports

		_
Use	FDOT Recommended PCI	Critical PCI
Runway	75	65
Taxiway	65	65
Apron	65	65

Based on historic trends of pavement performance and industry standard practices in pavement maintenance and rehabilitation, the SAPMP included general guidance on construction activity based on condition PCI, as shown on Table 5-4. It is recommended that further investigation of underlying pavement conditions is performed at the design phase.

Table 5-4: Maintenance and Major Rehabilitation Activity Based on PCI

Category	Activity	PCI Range
	Crack Sealing (AC/PCC) Crack Sealing (AC/PCC)	
Maintenance	Partial Depth Patching (AC)	75 - 90
	• Full Depth Patching (AC/PCC)	. 0 . 7 0
	Surface Treatment (AC)	
	Mill and Overlay (AC)	
Rehabilitation	 Concrete Pavement Restoration (PCC) 	40 - 74
	 Full Depth Pavement Reconstruction 	0 - 39

The PCI standard scale ranges from a value of 0, typically representing a pavement in a failed condition, to a value of 100 which typically represents a pavement in new or good condition. Generally, airfield pavement sections with a PCI of 75 or higher that are not exhibiting distresses due to aircraft loading will benefit from maintenance activities such as crack sealing, patching, and surface treatments. Pavement sections with PCI values within the range of 40 to 74 may require major rehabilitation, such as a mill and overlay. Lastly, pavement sections with a PCI value of 40 or less are recommended to undergo pavement

reconstruction. Generally pavement reconstruction is the only practical means of restoration due to the substantial distresses observed in the pavement structure. Since PCI values are based solely on the visual determination of pavement distresses and deterioration, this method does not provide a direct measure of structural integrity.

5.2 Unit Costs

The FDOT SAPMP developed and updated the maintenance and major rehabilitation costs based on public cost databases for airport and highway pavement construction. Additionally, cost data collected from FDOT and FAA sponsored projects in the Florida Airports System were utilized to identify construction cost trends across the state.

The maintenance, repair, and preservation activity costs have been updated and developed using readily available construction cost data at the time of this update. The costs depicted in this report for both maintenance and major rehabilitation are intended for planning purposes.

5.3 Maintenance, Repair, and Major Rehabilitation

FDOT recognizes that although pavement mill and overlay is recommended for flexible asphalt concrete pavement within a PCI range from 40 to 74, it is conceivable that airports may not have adequate funding to perform this type of major rehabilitation. A comprehensive surface treatment; per the treatments described in FAA AC 150/5370-10G Standards for Specifying Construction of Airports, as a maintenance rehabilitation activity, can be used in lieu of asphalt concrete pavement mill and overlay. However, it should be understood that these measures provide only a short term extension of pavement life. While the cost of surface treatments are significantly lower than that of pavement mill and overlay, it is not intended or implied to be a full rehabilitative measure for long term benefit. Table 5-5 and Table 5-6 provide budget costs associated with the work types shown in the table.

Table 5-5: AC Maintenance Unit Costs

Surface Type	Maintenance Work Type	Cost	Work Unit
	Full Depth Pavement Patch	\$5.00	Square Feet
Concrete APC)	Partial Depth Pavement Patch	\$3.00	Square Feet
alt Co C, AP(Seal Coat Treatment	\$0.55	Square Feet
Asph (C, AA	Crack Sealing	\$2.75	Linear Feet
Flexible Asphalt (AC, AAC,	Slurry Seal Coat Treatment	\$0.55	Square Feet
	Grinding / Removal	\$2.10	Square Feet

Table 5-6: PCC Maintenance Unit Costs

Surface Type	Maintenance Work Type	Cost	Work Unit
	Slab Replacement / Full Depth Patch	\$45.00	Square Feet
	Partial Patch - PCC	\$19.10	Square Feet
nent	Crack Sealing - PCC	\$4.25	Linear Feet
Rigid Pavement (PCC)	Joint Seal Repair (Local)	\$3.00	Linear Feet
Rigid	Slab Stabilization / Slab Jacking	\$45.00	Square Feet
	Micro-mill and Seal - PCC	\$1.00	Square Feet
	Seal Coat Treatment	\$1.00	Square Feet

As part of the SAPMP update, the distress data observed at each airport during the inspection is extrapolated on a section basis to make maintenance recommendations. These recommendations are a direct result of the distress types, severities, and quantities observed at the time of inspection. The maintenance recommendations and planning costs are correlated with the airport's airfield pavement network's overall area weighted PCI and used to plan

future maintenance costs. Future maintenance costs are planning budgets that are not specific to a pavement section, but are estimates for the entire airfield. Table 5-7 provides budget costs associated with the rehabilitation activities.

Table 5-7: Rehabilitation Activities and Unit Costs by Condition for Regional Reliever Airports

Category	Activity	PCI Range	Cost/SqFt
	Mill and Overlay (AC)	40 74	\$10.00
Rehabilitation	Concrete Pavement Restoration (PCC)	40 - 74	\$15.00
	• Full Depth Pavement Reconstruction	0 - 39	\$20.00

A cost scale has been developed based on PCI to develop planning level budgets for the airfield pavements. The cost scale is adjusted by project year based on an assumed inflation rate of 3%. In Appendix E, Table E-1 summarizes the Year-1 maintenance and repair recommendations based on the most recent inspection. The summary in Table E-1 does not take into account any rehabilitation activities, but rather summarizes preventative activities for all PCI ranges, including below critical PCI sections.

MAJOR PAVEMENT REHABILITATION NEEDS

As part of the SAPMP, major pavement rehabilitation planning is developed based on current and predicted PCI in comparison with the Critical PCI. The Critical PCI has been determined based on the historic trends of pavement condition relative to the benefit of maintenance and repair activities. Pavement sections determined to have a PCI less than that of the Critical PCI are assumed to have deteriorated to a point at which maintenance and repair level activity would provide little benefit.

The objective of the major pavement rehabilitation needs analysis is to provide planning level projects within an airport's airfield pavement network. Major rehabilitation activities are recommended when a pavement section has deteriorated below the Critical PCI value from a functionality perspective. In addition, major rehabilitation is also recommended when the Section PCI is above the Critical PCI but the Section has load-related PCI distresses. However, most major rehabilitation work is recommended when the Section PCI is below the Critical PCI, which is when maintenance and repair level activities are not considered to be cost effective.

Major rehabilitation is identified within the SAPMP as major construction activity that would result in an improvement or "resetting" of the pavement section's PCI to a value of 100. Such activities could include; mill and hot-mix asphalt overlay and re-construction. This analysis was conducted with no constraints to budgets as a means to identify all pavement projects based on Critical PCI for a 10-year duration. It is recommended that the airport use this as a planning tool for future project development and prioritization. Table 6-1 depicts the major rehabilitation work identified on the pavement section level based on current and predicted pavement PCI.

Airports should consider the major rehabilitation work types of mill and overlay, PCC restoration, and reconstruction planning level classifications only. Additional design level investigation in accordance to the FAA Advisory Circulars will be required to identify specific areas within each section that are subject to reconstruction, mill and overlay, and PCC restoration. The work and budgets identified are intended for the planning level not the design level. Areas identified as mill and overlay may in fact require select areas of reconstruction should load-based distresses observed warrant it.

Table 6-1: Summary of Major Rehabilitation

Year	Branch ID	Section ID	Major M&R Costs*	PCI Before M&R	M&R Activity	PCI After M&R
2015	AP	4140	\$ 224,502.00	62	Mill and Overlay	100
2015	RW 4-22	6105	\$ 4,657,501.00	57	Mill and Overlay	100
2015	TW A	105	\$ 1,548,783.00	59	Mill and Overlay	100
2015	TW B	150	\$ 70,095.00	56	Mill and Overlay	100
2015	TW C	310	\$ 252,600.00	54	Mill and Overlay	100
2015	TW D	425	\$ 96,591.00	44	Mill and Overlay	100
2015	TW E	510	\$ 166,887.00	58	Mill and Overlay	100
2015	TW T-HANG	705	\$ 1,080,361.00	52	Mill and Overlay	100
2017	AP RU	5105	\$ 50,185.00	65	Mill and Overlay	100
2017	TW F	610	\$ 153,199.00	65	Mill and Overlay	100
2020	AP RU	5110	\$ 76,266.00	64	Mill and Overlay	100
2022	TW C	305	\$ 132,181.00	65	Mill and Overlay	100
2024	TW A	120	\$ 115,012.00	65	Mill and Overlay	100
		Total =	\$ 8,624,163.00			

^{*}Costs are adjusted for inflation at 3%.

The 10-year major rehabilitation program addresses those pavement sections that have a current or project PCI that is below the Critical PCI of 65 during the 10-year analysis period. The unconstrained or "unlimited budget" Major Rehabilitation Program is compared to a "No Major Rehabilitation Program" scenario in Figure 6-1. As shown, if no major rehabilitation work is completed in the next 10 years at your airport, the average PCI may be 21 points less than a plan that provides timely repairs to the airfield pavements.

PCI Area Weighted Average No M&R -M&R Plan

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 Year

Figure 6-1: 10-Year Major Rehabilitation Budget Scenario Analysis

7. PREVENTATIVE AND MAJOR REHABILITATION PLANNING

The preventative and major rehabilitation results include activities that are based on distresses observed and unconstrained by budget limits. FDOT recognizes that the projects identified as Year-1 needs in 2015, based on condition, may exceed a typical annual budget level. It is recommended that each airport further evaluate each project's feasibility and desirability based on the airport's future development plans and budgeting scenarios.

In an effort to identify appropriate budget levels, the 10-year Preventative and Major Rehabilitation analysis evaluated projected budget needs based on predicted PCI of each pavement section. Table 7-1 and Figure 7-1 provides a summary of the expected preventative and major rehabilitation for each program year.

Table 7-1: 10-Year Preventative and Major Rehabilitation Summary

Program Year	P	Preventative	Ma	jor Rehabilitation	Total Year Costs
2015	\$	82,329.16	\$	8,097,320.02	\$ 8,179,649.18
2016	\$	108,172.15	\$		\$ 108,172.15
2017	\$	129,410.84	\$	203,384.76	\$ 332,795.61
2018	\$	153,894.05	\$	-	\$ 153,894.05
2019	\$	179,208.94	\$	-	\$ 179,208.94
2020	\$	203,549.19	\$	76,265.88	\$ 279,815.07
2021	\$	248,217.18	\$	-	\$ 248,217.18
2022	\$	293,235.30	\$	132,180.72	\$ 425,416.03
2023	\$	346,240.22	\$	-	\$ 346,240.22
2024	\$	398,810.87	\$	115,011.54	\$ 513,822.41
Total =					\$ 10,767,230.84

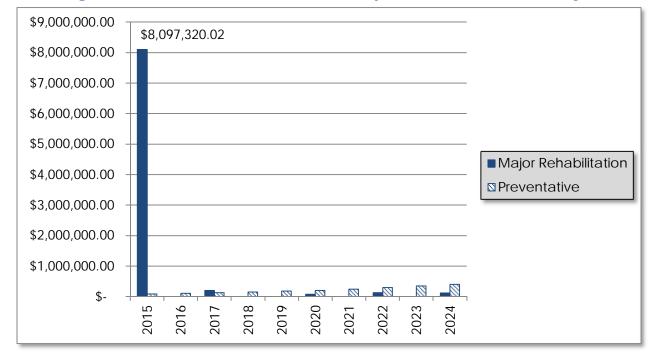


Figure 7-1: 10-Year Preventative and Major Rehabilitation Summary

According to the most recent inspections at the time of this update; the following pavement sections were identified as a Year-1 need for major rehabilitation:

- Runway 4-22 Section 6105
 - Mill and Overlay attributed to climate and age of pavement.
- Apron Section 4140
 - Mill and Overlay attributed to climate and age of pavement.
- Taxiway T-Hangar Section 705
 - Mill and Overlay attributed to climate and age of pavement.
- Taxiway E Section 510
 - Mill and Overlay attributed to climate and age of pavement.
- Taxiway D Section 425
 - Mill and Overlay attributed to climate and age of pavement.
- - Mill and Overlay attributed to climate and age of pavement.
- Taxiway B Section 150
 - Mill and Overlay attributed to climate and age of pavement.
- Taxiway A Section 105
 - Mill and Overlay attributed to climate and age of pavement.

Appendix E summarizes the preventative repair recommendations for Year-1 and Appendix F provides an exhibit, Airfield Pavement Major Rehabilitation that depicts the recommended major rehabilitation on the airfield pavement network according to work type and year.

8. VISUAL AID EXHIBITS

8.1 Airfield Pavement Network Definition Exhibit

The Airfield Pavement Network Definition Exhibit in Appendix A depicts the airfield layout in a manner that defines the airfield pavement infrastructure as branches, sections, and sample units in accordance with the ASTM D 5340-12. The exhibits are prepared and updated with information provided by the airport and from aerial imagery from the FDOT Surveying and Mapping publications.

8.2 Airfield Pavement System Inventory Exhibit

The Airfield Pavement System Inventory Exhibit in Appendix A depicts any recent airfield pavement construction activity reported by the airport. The exhibit is intended to identify pavement sections that may have changed in geometry and pavement composition that would affect the section delineation. The information provided in the Airport Response Form was used as the basis of the changes and confirmed with the airport personnel at the time of inspection.

8.3 Airfield Pavement Condition Index Rating Exhibit

The Airfield Pavement Condition Index Rating Exhibit in Appendix B has been prepared based on the section condition analysis of the distress data collected during the recent condition index rating survey. The exhibit graphically depicts the inventory with associated condition rating colors and PCI values.

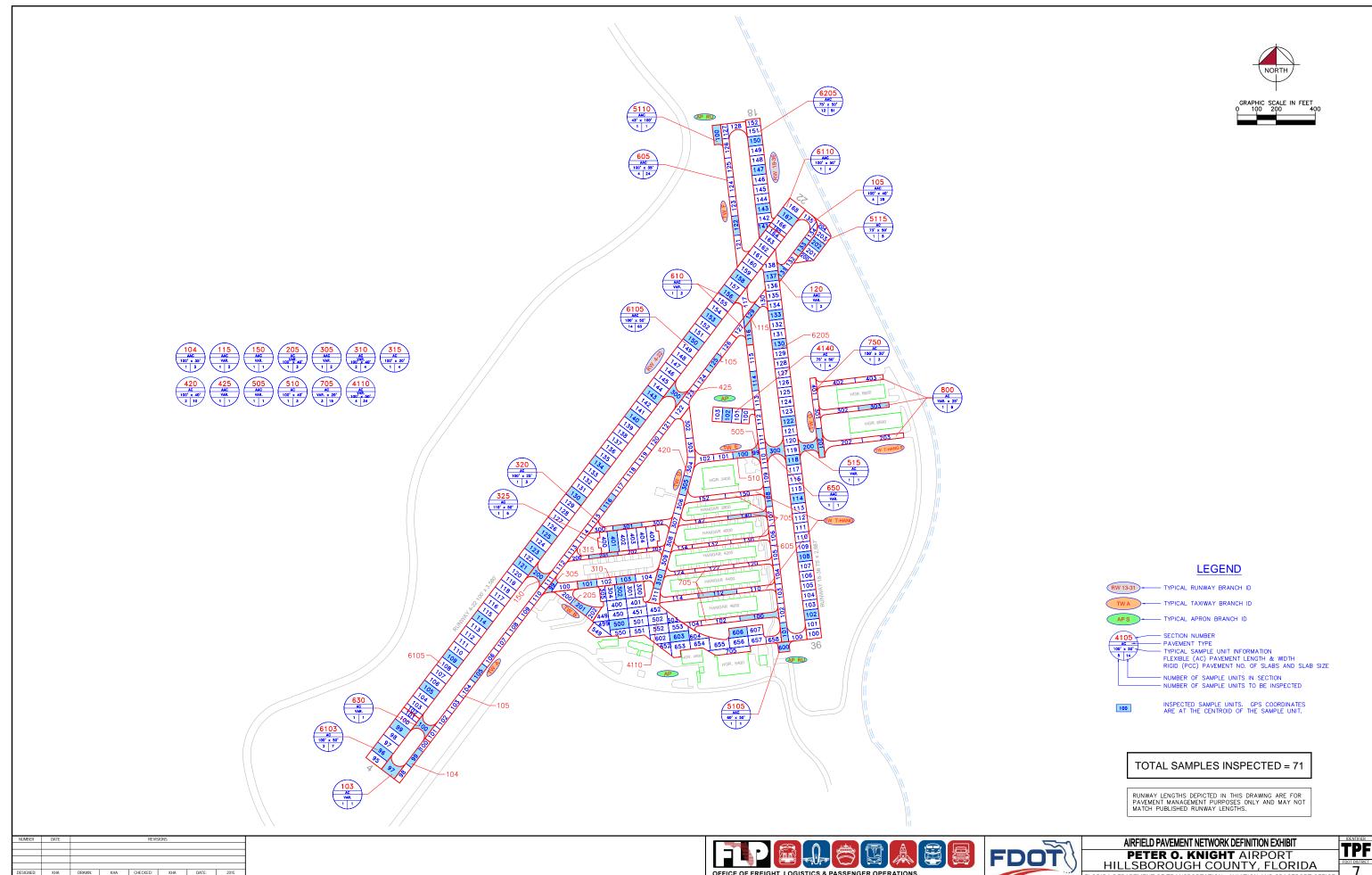
8.4 Airfield Pavement Major Rehabilitation Exhibit

The Airfield Pavement Major Rehabilitation Exhibit in Appendix F has been prepared based on the section pavement performance model and major rehabilitation analysis. The exhibit graphically depicts the inventory with associated rehabilitation activity, program year, and the planning level costs.

8.5 Airfield Pavement Condition Survey Inspection Photographs

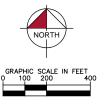
During the field condition survey inspection; inspectors photographed representative distress types observed. Select photographs are provided in Appendix G to provide visual support to special pavement conditions or distresses observed.

9. RECOMMENDATIONS


The recommendations developed are intended for the planning level for each airport. Additional project specific investigation in accordance with the FAA Advisory Circulars is recommended to further refine the project scope and budget requirements.

The following recommendations were made based on the 2014 condition survey inspection, condition analysis, and maintenance/rehabilitation analysis results:

- Runway 4-22 Section 6105
 - Mill and Overlay attributed to climate and age of pavement.
- Apron Section 4140
 - Mill and Overlay attributed to climate and age of pavement.
- Taxiway T-Hangar Section 705
 - Mill and Overlay attributed to climate and age of pavement.
- Taxiway E Section 510
 - Mill and Overlay attributed to climate and age of pavement.
- Taxiway D Section 425
 - Mill and Overlay attributed to climate and age of pavement.
- Taxiway C Section 310
 - Mill and Overlay attributed to climate and age of pavement.
- Taxiway B Section 150
 - Mill and Overlay attributed to climate and age of pavement.
- Taxiway A Section 105
 - Mill and Overlay attributed to climate and age of pavement.
- Run-up Apron Sections 5105 and 5110
 - Mill and Overlay attributed to climate and age of pavement.
- Taxiway F Section 610
 - Mill and Overlay attributed to climate and age of pavement.
- Taxiway C Section 305
 - Mill and Overlay attributed to climate and age of pavement.
- Taxiway A Section 120
 - Mill and Overlay attributed to climate and age of pavement.


APPENDIX A

- AIRFIELD PAVEMENT NETWORK DEFINITION EXHIBIT
- AIRFIELD PAVEMENT SYSTEM INVENTORY EXHIBIT
- PAVEMENT GEOMETRY INVENTORY
- WORK HISTORY REPORT

HILLSBOROUGH COUNTY, FLORIDA FLORIDA DEPARTMENT OF TRANSPORTATION - AVIATION AND SPACEPORT OFFICE

CONSTRUCTION SINCE LAST INSPECTION & ANTICIPATED CONSTRUCTION ACTIVITY

CONSTRUCTION YEAR	LOCATION	WORK TYPE / PAVEMENT SECTION
2011	TAXIWAY B AND D AND APRON	ASPHALT PAVEMENT RECONSTRUCTION
2011	TAXIWAY G AND E AND T-HANG E	NEW AC: 2"AC (TYPE S-1), 6" LIMEROCK (P-211), 12" STAB. SUB BASE (P-160)
2013	RUNWAY 4-22 AND TAXIWAY A	CRACK SEALING

LEGEND

RUNWAY LENGTHS DEPICTED IN THIS DRAWING ARE FOR PAVEMENT MANAGEMENT PURPOSES ONLY AND MAY NOT MATCH PUBLISHED RUNWAY LENGTHS.

IC \WFR_Aviation\142175	IX.\WFR_ANGEDI.\AZI77022Y\AXO\FARGHETS\TFF PETER O MIGHT ARPORT\ENGRIS\\022-TFF-INDITORCOMQ PLOTED: May 1, 2015 - 10.44 AM, BY, Bara, Art								
DESIGNED:	KHA	DRAWN:	KHA	CHECKED:	KHA	DATE:	2015		
NUMBER	DATE		REVISIONS						

OFFICE OF FREIGHT, LOGISTICS & PASSENGER OPERATIONS	

Table A-1: Pavement Geometry Inventory

						J	J				
Branch Name	Branch ID	Branch Use	Section ID	Length (FT)	Width (FT)	True Area (FT²)	Section Rank	Surface Type	Last Const. Date	Last Insp. Date	Total Samples
RUNWAY 18-36	RW 18-36	RUNWAY	6205	2,500	75	191,017	S	AAC	1/1/2008	10/6/2014	51
RUNWAY 4-22	RW 4-22	RUNWAY	6110	178	100	17,800	Р	AAC	1/1/2007	10/6/2014	4
RUNWAY 4-22	RW 4-22	RUNWAY	6105	3,105	100	310,500	Р	AAC	1/1/2001	10/6/2014	63
RUNWAY 4-22	RW 4-22	RUNWAY	6103	325	100	32,500	Р	AC	1/1/2007	10/6/2014	7
APRON	AP RU	APRON	5115	210	73	16,251	Р	AC	1/1/2007	10/6/2014	5
APRON	AP RU	APRON	5110	22	200	4,386	Р	AAC	1/1/2008	10/6/2014	1
APRON	AP RU	APRON	5105	15	200	3,154	Р	AAC	1/1/2008	10/6/2014	1
APRON	AP	APRON	4140	200	75	14,967	Р	AC	1/1/1986	10/6/2014	4
APRON	AP	APRON	4110	1,500	100	150,952	Р	AAC	1/1/2011	10/6/2014	34
TAXILANE TO EAST HANGARS	T/L HANG	TAXIWAY	800	600	25	29,573	Р	AC	1/1/2011	10/6/2014	6
TAXIWAY G	TW G	TAXIWAY	750	300	30	12,333	Р	AC	1/1/2011	10/6/2014	3
TAXIWAY TO T- HANGARS	TW T- HANG	TAXIWAY	705	3,500	20	72,024	Р	AC	1/1/1964	10/6/2014	16
TAXIWAY E	TW E	TAXIWAY	650	100	50	5,471	Р	AAC	1/1/2008	10/6/2014	1
TAXIWAY A	TW A	TAXIWAY	630	100	40	4,673	Р	AC	1/1/2007	10/6/2014	1
TAXIWAY F	TW F	TAXIWAY	610	200	35	9,627	Р	AAC	1/1/2008	10/6/2014	2
TAXIWAY F	TW F	TAXIWAY	605	2,400	35	88,517	Р	AAC	1/1/2008	10/6/2014	24
TAXIWAY E	TW E	TAXIWAY	515	100	50	4,952	Р	AC	1/1/2011	10/6/2014	1
TAXIWAY E	TW E	TAXIWAY	510	275	40	11,126	Р	AC	1/1/1965	10/6/2014	3
TAXIWAY E	TW E	TAXIWAY	505	50	40	2,353	Р	AAC	1/1/2005	10/6/2014	1
TAXIWAY D	TW D	TAXIWAY	425	75	40	5,338	Р	AAC	1/1/1992	10/6/2014	1
TAXIWAY D	TW D	TAXIWAY	420	1,000	40	41,270	Р	AAC	1/1/2011	10/6/2014	10
TAXIWAY CENTER	TW CENTER	TAXIWAY	325	300	100	33,247	Р	AC	1/1/2008	10/6/2014	6
TAXIWAY CENTER	TW CENTER	TAXIWAY	320	400	25	11,536	Р	AC	1/1/2008	10/6/2014	3

Pavement Evaluation Report - Peter O. Knight Airport

Branch Name	Branch ID	Branch Use	Section ID	Length (FT)	Width (FT)	True Area (FT²)	Section Rank	Surface Type	Last Const. Date	Last Insp. Date	Total Samples
TAXIWAY CENTER	TW CENTER	TAXIWAY	315	500	20	11,056	Р	AC	1/1/2008	10/6/2014	4
TAXIWAY C	TW C	TAXIWAY	310	425	40	16,840	Р	AC	1/1/1965	10/6/2014	4
TAXIWAY C	TW C	TAXIWAY	305	150	40	7,165	Р	AAC	1/1/2010	10/6/2014	2
TAXIWAY B	TW B	TAXIWAY	205	280	40	11,793	Р	AAC	1/1/2011	10/6/2014	3
TAXIWAY B	TW B	TAXIWAY	150	60	50	4,673	Р	AAC	1/1/1992	10/6/2014	1
TAXIWAY A	TW A	TAXIWAY	120	140	40	5,876	Р	AAC	1/1/2008	10/6/2014	2
TAXIWAY A	TW A	TAXIWAY	115	270	40	11,155	Р	AAC	1/1/2008	10/6/2014	3
TAXIWAY A	TW A	TAXIWAY	105	2,500	40	103,252	Р	AAC	1/1/1992	10/6/2014	29
TAXIWAY A	TW A	TAXIWAY	104	262	35	9,170	Р	AC	1/1/2007	10/6/2014	3
TAXIWAY A	TW A	TAXIWAY	103	100	50	5,616	Р	AC	1/1/2007	10/6/2014	1

Note: If new construction, then survey date = last construction date and PCI is set to 100 by MicroPAVER.

^{*} Sections not surveyed due to reasons such as re-sectioning, no escort, not accessible at the time of survey. Please refer to Section 3 for discussion on the updates to the ASTM D 5640 that may affect PCI in comparison to previous program update.

Date:04/27/2015

Work History Report

1 of 6

Pavement Database:FDOT

Network: TPF Branch: AP (APRON) Section: 4110 Surface: AAC L.C.D.: 01/01/2011 Use: APRON 100.00 Ft Rank P Length: 1.500.00 Ft Width: True Area: 150,952.39 SqF Work Work Thickness Major Comments Cost Date Code Description (in) M&R 0.00 01/01/2011 ML-OL Mill and Overlay \$0 True 01/01/1987 **IMPORTED REPAIR** False 1987 SEAL COAT 01/01/1964 **IMPORTED BUILT** 1.00 True 1964 1" BIT 6" LIMEROCK Network: TPF Branch: AP (APRON) Section: 4140 Surface: AC L.C.D.: 01/01/1986 Use: APRON Rank P Length: 200.00 Ft Width: 75.00 Ft True Area: 14.966.77 SqF Work Work Work Thickness Major Comments Cost M&R Date Code Description (in) 01/01/1986 **IMPORTED BUILT** True EST 1986 BIT Branch: AP RU Network: TPF (APRON) Section: 5105 Surface: AAC **L.C.D.**: 01/01/2008 **Use**: APRON True Area: 3.153.64 SqF Rank P Length: 15.00 Ft Width: 200.00 Ft Work Work Work Thickness Major Cost Comments M&R Date Code Description (in) 01/01/2008 ML-OL Mill and Overlay \$0 0.00 **IMPORTED** 1987: 1.5" AC ON 7" P211 ON 6" STAB. 01/01/1987 **BUILT** 1.50 True SUBGRADE (APRON) Network: TPF Branch: AP RU Section: 5110 Surface: AAC L.C.D.: 01/01/2008 Use: APRON True Area: 4,385.84 SqF Rank P Length: 22.00 Ft Width: 200.00 Ft Work Work Thickness Major Comments Cost M&R Date Code Description (in) 01/01/2008 ML-OL Mill and Overlay \$0 True 0.00 **BUILT** 01/01/1987 **IMPORTED** 1.50 True 1987: 1.5" AC ON 7" P211 ON 6" STAB. SUBGRADE Network: TPF Branch: AP RU (APRON) Section: 5115 Surface: AC L.C.D.: 01/01/2007 Use: APRON True Area: 16.251.05 SqF Rank P Length: 210.00 Ft Width: 73.00 Ft Work Work Work Thickness Major Comments Cost Date Description (in) M&R Code 01/01/2007 INITIAL Initial Construction 0.00 True Network: TPF Branch: RW 18-36 (RUNWAY 18-36) Section: 6205 Surface: AAC L.C.D.: 01/01/2008 Use: RUNWAY Rank S Length: 2.500.00 Ft 75.00 Ft Width: True Area:191,016.57 SqF Work Work Thickness Work Major Comments Cost Date Code Description (in) M&R 01/01/2008 Mill and Overlav \$0 0.00 True **OVFRIAY** 1.50 1986 1.5" P-401 OL 01/01/1986 **IMPORTED** True 01/01/1963 **IMPORTED BUILT** 1963 1" P-401 OL ON .5-1" BIT AND 6" 1.00 True SAND Network: TPF Branch: RW 4-22 (RUNWAY 4-22) Section: 6103 Surface: AC L.C.D.: 01/01/2007 Use: RUNWAY True Area: 32,500.00 SqF Rank P Length: 325.00 Ft Width: 100.00 Ft Work Major Work Work Thickness Comments Cost Date Code Description (in) M&R 01/01/2007 INITIAL **Initial Construction** 0.00 True Network: TPF Branch: RW 4-22 (RUNWAY 4-22) Section: 6105 Surface: AAC L.C.D.: 01/01/2001 Use: RUNWAY True Area:310,500.00 SqF Rank P Length: 3.105.00 Ft Width: 100.00 Ft Thickness Work Work Work Major Comments Cost Date Code Description (in) M&R 01/01/2001 OL-AF Overlay - AC Fabric \$0 2.00 True 2"AC with Asph Runbber Membr nterlayer/Existing **IMPORTED** EST 1986 BIT OL 01/01/1986 **OVERLAY** True

Date:04/27/2015

Work History Report

2 of 6

Pavement Database:FDOT

01/01/1960 | IMPORTED **BUILT** 1.00 True 1960 1" P-401 OL ON EXISTING PAV'T (RUNWAY 4-22) Network: TPF Branch: RW 4-22 Section: 6110 Surface: AAC L.C.D.: 01/01/2007 Use: RUNWAY True Area: 17,800.00 SqF Rank P Length: 178.00 Ft Width: 100.00 Ft Work Work Work Thickness Major Comments Cost Date Code Description M&R (in) 01/01/2007 ML-OL Mill and Overlay True 0.00 01/01/1992 **IMPORTED OVERLAY** 1.50 True 1992 1.5" P-401 OL **IMPORTED** 01/01/1960 **BUILT** 1.00 True 1960 1" P-401 OL ON EXISTING PAV'T Network: TPF Branch: T/L HANG (TAXILANE TO EAST HANGARS) Section: 800 Surface: AC L.C.D.: 01/01/2011 Use: TAXIWAY Rank P Length: 600.00 Ft Width: 25.00 Ft True Area: 29.573.00 SqF Work Thickness Work Work Major Comments Cost Date Code Description (in) M&R 01/01/2011 NU-IN New Construction - Initial \$0 0.00 True 2" ASPHALT (TYPE S-1), 6" LIMEROCK P-211), 12" STABILIZED SUB (P-160) Network: TPF Branch: TW A (TAXIWAY A) Section: 103 Surface: AC L.C.D.: 01/01/2007 Use: TAXIWAY Rank P Length: True Area: 5,615.69 SqF 100.00 Ft Width: 50.00 Ft Work Work Work Thickness Major Comments Cost Description M&R Date Code (in) 01/01/2007 INITIAL **Initial Construction** \$0 0.00 True Network: TPF Branch: TW A (TAXIWAY A) Section: 104 Surface: AC L.C.D.: 01/01/2007 Use: TAXIWAY Rank P Length: True Area: 9,170.00 SaF Width: 35.00 Ft 262.00 Ft Work Work Thickness Major Comments Cost Description Date Code M&R (in) 01/01/2007 INITIAL **Initial Construction** 0.00 True Network: TPF Surface: AAC (TAXIWAY A) Branch: TW A Section: 105 L.C.D.: 01/01/1992 Use: TAXIWAY True Area:103,252.19 SqF Rank P Length: 2.500.00 Ft 40.00 Ft Width: Work Work Work Thickness Major Comments Cost Description Date Code M&R (in) 01/01/1992 **IMPORTED OVERLAY** True 1992 1" P-401 OL 1.00 01/01/1965 **IMPORTED BUILT** 1.00 True 1965 1" P-401 6" P-211 28" GRANULAR Surface: AAC Network: TPF Branch: TW A (TAXIWAY A) Section: 115 L.C.D.: 01/01/2008 Use: TAXIWAY Rank P Length: 270.00 Ft Width: 40.00 Ft True Area: 11,155.15 SqF Work Work Work Thickness Major Comments Cost Date Code Description M&R (in) 01/01/2008 ML-OL Mill and Overlay \$0 0.00 True 1965 1" BIT 6" LIMEROCK 28" 01/01/1965 BUILT **IMPORTED** 1.00 True GRANULAR Network: TPF Branch: TW A (TAXIWAY A) Surface: AAC Section: 120 L.C.D.: 01/01/2008 Use: TAXIWAY Rank P Length: 140.00 Ft Width: 40.00 Ft True Area: 5.876.45 SqF Work Work Work Thickness Major Comments Cost Code Description Date (in) M&R 01/01/2008 ML-OL Mill and Overlay \$0 0.00 True 01/01/1986 **IMPORTED OVERLAY** 1.50 True 1986 1.5" P-401 OL 01/01/1965 **IMPORTED BUILT** 1.00 True 1965 1" BIT 6" LIMEROCK 28" GRANULAR Network: TPF Branch: TW A (TAXIWAY A) Section: 630 Surface: AC L.C.D.: 01/01/2007 Use: TAXIWAY Rank P Length: 100.00 Ft 40.00 Ft True Area: 4.673.45 SqF Width: Work Work Work Thickness Major Comments Cost M&R Date Code Description (in) INITIAL \$0 01/01/2007 **Initial Construction** 0.00 True

Date:04/27/2015

Work History Report

3 of 6

Pavement Database:FDOT

 Network:
 TPF
 Branch:
 TW B
 (TAXIWAY B)
 Section:
 150
 Surface:
 AAC

 L.C.D.:
 01/01/1992
 Use:
 TAXIWAY
 Rank P Length:
 60.00 Ft
 Width:
 50.00 Ft
 True Area:
 4,673.00 SqF

Work Work Work Thickness Major Comments Cost Date Code Description (in) M&R 01/01/1992 ML-OL Mill and Overlay \$0 0.00 True 01/01/1965 INITIAL **Initial Construction** \$0 0.00 True

 Network:
 TPF
 Branch:
 TW B
 (TAXIWAY B)
 Section:
 205
 Surface:
 AAC

 L.C.D.:
 01/01/2011
 Use:
 TAXIWAY
 Rank P Length:
 280.00 Ft
 Width:
 40.00 Ft
 True Area:
 11,793.45 SqF

Work Work Work Thickness Major Cost Comments M&R Date Code Description (in) 01/01/2011 ML-OL Mill and Overlay \$0 0.00 True 01/01/1987 **IMPORTED REPAIR** False 1987 SEAL CAOT 01/01/1965 **IMPORTED BUILT** 1965 1" BIT 6" LIMEROCK 28" 1.00 True GRANULAR

 Network:
 TPF
 Branch:
 TW C
 (TAXIWAY C)
 Section:
 305
 Surface:
 AAC

 L.C.D.:
 01/01/2010
 Use:
 TAXIWAY
 Rank P Length:
 150.00 Ft
 Width:
 40.00 Ft
 True Area:
 7,165.00 SqF

Work Work Work Thickness Major Comments Cost M&R Date Code Description (in) 01/01/2010 ML-OL Mill and Overlay 0.00 True \$0 01/01/1992 **IMPORTED OVERLAY** 1992 1" P-401 OL 1.00 True 01/01/1965 **IMPORTED BUILT** 1.00 1965 1" P-401 6" P-211 28" GRANULAR

 Network:
 TPF
 Branch:
 TW C
 (TAXIWAY C)
 Section:
 310
 Surface:
 AC

 L.C.D.:
 01/01/1965
 Use:
 TAXIWAY
 Rank P Length:
 425.00 Ft
 Width:
 40.00 Ft
 True Area:
 16.840.00 SqF

Work Work Major Thickness Comments Cost Date Code Description M&R (in) 01/01/1987 **IMPORTED REPAIR** False 1987 SEAL COAT 01/01/1965 **IMPORTED BUILT** 1.00 True 1965 1" BIT 6" LIMEROCK 28" GRANULAR

 Network:
 TPF
 Branch:
 TW CENTER
 (TAXIWAY CENTER)
 Section:
 315
 Surface:
 AC

 L.C.D.:
 01/01/2008
 Use:
 TAXIWAY
 Rank P Length:
 500.00 Ft
 Width:
 20.00 Ft
 True Area:
 11.056.09 SqF

Work Work Work Thickness Major Comments Cost Date Code Description M&R (in) INITIAL Initial Construction 01/01/2008 \$0 0.00 True

 Network:
 TPF
 Branch:
 TW CENTER
 (TAXIWAY CENTER)
 Section:
 320
 Surface:
 AC

 L.C.D.:
 01/01/2008
 Use:
 TAXIWAY
 Rank P Length:
 400.00 Ft
 Width:
 25.00 Ft
 True Area:
 11,536.12 SqF

Work Work Work Thickness Major Comments Cost Date Code Description (in) M&R 01/01/2008 INITIAL \$0 0.00 True Initial Construction

Network: TPF Branch: TW CENTER (TAXIWAY CENTER) Section: 325 Surface: AC L.C.D.: 01/01/2008 Use: TAXIWAY Rank P Length: 300.00 Ft Width: 100.00 Ft True Area: 33.247.46 SqF

Work Thickness Work Work Major Comments Cost Date Code Description (in) M&R **Initial Construction** 01/01/2008 INITIAL \$0 0.00 True

 Network:
 TPF
 Branch:
 TW D
 (TAXIWAY D)
 Section:
 420
 Surface:
 AAC

 L.C.D.:
 01/01/2011
 Use:
 TAXIWAY
 Rank P Length:
 1,000.00 Ft
 Width:
 40.00 Ft
 True Area:
 41,269.85 SqF

Work Date	Work Code	Work Description	Cost	Thickness (in)	Major M&R	Comments
01/01/2011	ML-OL	Mill and Overlay	\$0	0.00	True	
01/01/1987	IMPORTED	REPAIR			False	1987 SEAL COAT
01/01/1964	IMPORTED	BUILT		1.00	True	1964 1" P-401 6" P-211

Date:04/27/2015

Work History Report

Pavement Database:FDOT

4 of 6

 Network:
 TPF
 Branch:
 TW D
 (TAXIWAY D)
 Section:
 425
 Surface:
 AAC

 L.C.D.:
 01/01/1992
 Use:
 TAXIWAY
 Rank P Length:
 75.00 Ft
 Width:
 40.00 Ft
 True Area:
 5,338.00 SqF

Work Work Work Thickness Major Comments Cost Date Code Description (in) M&R **OVERLAY** 01/01/1992 **IMPORTED** 1.00 True 1992 1" P-401 OL 01/01/1964 **IMPORTED BUILT** 1.00 True 1964 1" P-201 6" LIMEROCK

 Network:
 TPF
 Branch:
 TW E
 (TAXIWAY E)
 Section:
 505
 Surface:
 AAC

 L.C.D.:
 01/01/2005
 Use:
 TAXIWAY
 Rank P Length:
 50.00 Ft
 Width:
 40.00 Ft
 True Area:
 2,353.21 SqF

Work Work Work Thickness Major Cost Comments M&R Date Code Description (in) 01/01/2005 MI&OV Mill & Overlay \$0 2.00 True 2" AC / EXISTING BASE 01/01/1986 **IMPORTED OVERLAY** 1.50 True 986 1.5" BIT OL 01/01/1965 **IMPORTED BUILT** 1965 1" BIT 6" LIMEROCK 28" 1.00 True GRANULAR

 Network:
 TPF
 Branch:
 TW E
 (TAXIWAY E)
 Section:
 510
 Surface:
 AC

 L.C.D.:
 01/01/1965
 Use:
 TAXIWAY
 Rank P Length:
 275.00 Ft
 Width:
 40.00 Ft
 True Area:
 11,125.79 SqF

Work Work Work Thickness Major Comments Cost M&R Date Code Description (in) 01/01/1987 **IMPORTED REPAIR** False 1987 SEAL COAT **IMPORTED** 1965 1" BIT 6" LIMEROCK 28" 01/01/1965 **BUILT** 1.00 True GRANULAR

 Network:
 TPF
 Branch:
 TW E
 (TAXIWAY E)
 Section:
 515
 Surface:
 AC

 L.C.D.:
 01/01/2011
 Use:
 TAXIWAY
 Rank P Length:
 100.00 Ft
 Width:
 50.00 Ft
 True Area:
 4,952.00 SqF

Work Thickness Work Work Major Comments Cost Description M&R Date Code (in) 2" ASPHALT (TYPE S-1), 6" LIMEROCK 01/01/2011 NU-IN New Construction - Initial \$0 0.00 P-211), 12" STABILIZED SUB (P-160)

 Network:
 TPF
 Branch:
 TW E
 (TAXIWAY E)
 Section:
 650
 Surface:
 AAC

 L.C.D.:
 01/01/2008
 Use:
 TAXIWAY
 Rank P Length:
 100.00 Ft
 Width:
 50.00 Ft
 True Area:
 5.470.82 SqF

Work Work Work Thickness Major Comments Cost Date Code Description (in) M&R ML-OL 01/01/2008 Mill and Overlay \$0 0.00 True 01/01/1986 ML-OL Mill and Overlay \$0 0.00 True 01/01/1963 INITIAL **Initial Construction** \$0 0.00 True

 Network:
 TPF
 Branch:
 TW F
 (TAXIWAY F)
 Section:
 605
 Surface:
 AAC

 L.C.D.:
 01/01/2008
 Use:
 TAXIWAY
 Rank P Length:
 2,400.00 Ft
 Width:
 35.00 Ft
 True Area:
 88,517.00 SqF

Work Work Work Thickness Major Comments Cost Description Date Code (in) M&R 01/01/2008 ML-OL Mill and Overlay \$0 0.00 True 01/01/1987 **IMPORTED BUILT** 1.50 True 1987 1.5" BIT 7" P-211 6" STAB BASE

 Network:
 TPF
 Branch:
 TW F
 (TAXIWAY F)
 Section:
 610
 Surface:
 AAC

 L.C.D.:
 01/01/2008
 Use:
 TAXIWAY
 Rank P Length:
 200.00 Ft
 Width:
 35.00 Ft
 True Area:
 9.627.00 SqF

Work Work Work Thickness Major Comments Cost Date Description Code M&R (in) 01/01/2008 ML-OL Mill and Overlay \$0 0.00 True 01/01/1987 **IMPORTED BUILT** 1.50 True 1987 1.5" BIT 7" SOIL CEMENT 6" STAB BASE

 Network:
 TPF
 Branch:
 TW G
 (TAXIWAY G)
 Section:
 750
 Surface:
 AC

 L.C.D.:
 01/01/2011
 Use:
 TAXIWAY
 Rank P Length:
 300.00 Ft
 Width:
 30.00 Ft
 True Area:
 12.333.00 SqF

Work Date Code Description Cost Thickness (in) M&R Comments

Date:04/	/27/2015	Work History Report				5 of 6
		Pavemen	t Database:FD	OT		
01/01/2011	NU-IN New Construction - Initial \$0 0.0					2" ASPHALT (TYPE S-1), 6" LIMEROCK (P-211), 12" STABILIZED SUB (P-160)
Network: TF L.C.D.: 01/01	PF Br 1/1964 Use: TA		Y TO T-HANGAR 3,500.00 Ft			ction: 705 Surface: AC 00 Ft True Area: 72,024.05 SqF
Work Date	Work Code	Work Description	Cost	Thickness (in)	Major M&R	Comments
01/01/1964	IMPORTED	BUILT			True	EST 1964 BIT

Date:04/27/2015

Work History Report

Pavement Database:FDOT

6 of 6

Summary:

Work Description	Section Count	Area Total (SqFt)	Thickness Avg (in)	Thickness STD (in)
BUILT	20	1,079,112.35	1.11	.21
Initial Construction	10	134,193.68	.00	.00
Mill & Overlay	1	2,353.21	2.00	
Mill and Overlay	15	558,326.98	.00	.00
New Construction - Initial	3	46,858.00	.00	.00
OVERLAY	8	643,301.42	1.29	.27
Overlay - AC Fabric	1	310,500.00	2.00	
REPAIR	5	231,981.48		

APPENDIX B

- AIRFIELD PAVEMENT CONDITION INDEX RATING EXHIBIT
- PAVEMENT CONDITION INDEX INVENTORY

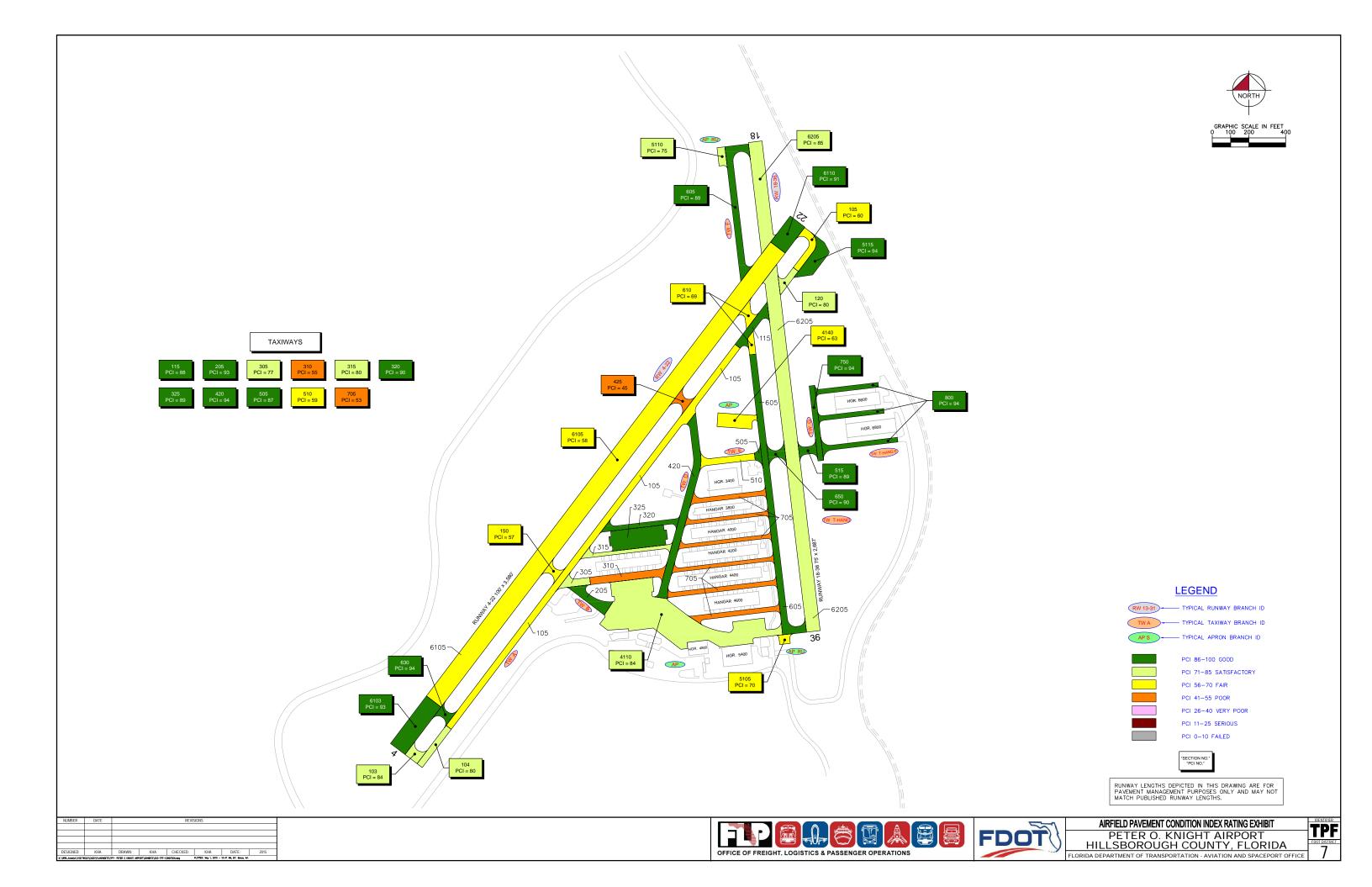


Table B-1: Pavement Condition Index Inventory

Branch Name	Branch ID	Branch Use	Section ID	True Area (FT²)	Section Rank	Surface Type	PCI	PCI Category	Total Inspection Samples	Total Samples
RUNWAY 18-36	RW 18-36	RUNWAY	6205	191,017	S	AAC	85	Satisfactory	12	51
RUNWAY 4-22	RW 4-22	RUNWAY	6110	17,800	Р	AAC	91	Good	1	4
RUNWAY 4-22	RW 4-22	RUNWAY	6105	310,500	Р	AAC	58	Fair	14	63
RUNWAY 4-22	RW 4-22	RUNWAY	6103	32,500	Р	AC	93	Good	2	7
APRON	AP RU	APRON	5115	16,251	Р	AC	94	Good	1	5
APRON	AP RU	APRON	5110	4,386	Р	AAC	75	Satisfactory	1	1
APRON	AP RU	APRON	5105	3,154	Р	AAC	70	Fair	1	1
APRON	AP	APRON	4140	14,967	Р	AC	63	Fair	1	4
APRON	AP	APRON	4110	150,952	Р	AAC	84	Satisfactory	4	34
TAXILANE TO EAST HANGARS	T/L HANG	TAXIWAY	800	29,573	Р	AC	94	Good	1	6
TAXIWAY G	TW G	TAXIWAY	750	12,333	Р	AC	94	Good	1	3
TAXIWAY TO T- HANGARS	TW T-HANG	TAXIWAY	705	72,024	Р	AC	53	Poor	3	16
TAXIWAY E	TW E	TAXIWAY	650	5,471	Р	AAC	90	Good	1	1
TAXIWAY A	TW A	TAXIWAY	630	4,673	Р	AC	94	Good	1	1
TAXIWAY F	TW F	TAXIWAY	610	9,627	Р	AAC	69	Fair	1	2
TAXIWAY F	TW F	TAXIWAY	605	88,517	Р	AAC	89	Good	4	24
TAXIWAY E	TW E	TAXIWAY	515	4,952	Р	AC	89	Good	1	1
TAXIWAY E	TW E	TAXIWAY	510	11,126	Р	AC	59	Fair	1	3
TAXIWAY E	TW E	TAXIWAY	505	2,353	Р	AAC	87	Good	1	1
TAXIWAY D	TW D	TAXIWAY	425	5,338	Р	AAC	45	Poor	1	1
TAXIWAY D	TW D	TAXIWAY	420	41,270	Р	AAC	94	Good	2	10
TAXIWAY CENTER	TW CENTER	TAXIWAY	325	33,247	Р	AC	89	Good	1	6
TAXIWAY CENTER	TW CENTER	TAXIWAY	320	11,536	Р	AC	90	Good	1	3
TAXIWAY CENTER	TW CENTER	TAXIWAY	315	11,056	Р	AC	80	Satisfactory	1	4

Pavement Evaluation Report - Peter O. Knight Airport

Branch Name	Branch ID	Branch Use	Section ID	True Area (FT²)	Section Rank	Surface Type	PCI	PCI Category	Total Inspection Samples	Total Samples
TAXIWAY C	TW C	TAXIWAY	310	16,840	Р	AC	55	Poor	2	4
TAXIWAY C	TW C	TAXIWAY	305	7,165	Р	AAC	77	Satisfactory	1	2
TAXIWAY B	TW B	TAXIWAY	205	11,793	Р	AAC	93	Good	1	3
TAXIWAY B	TW B	TAXIWAY	150	4,673	Р	AAC	57	Fair	1	1
TAXIWAY A	TW A	TAXIWAY	120	5,876	Р	AAC	80	Satisfactory	1	2
TAXIWAY A	TW A	TAXIWAY	115	11,155	Р	AAC	88	Good	1	3
TAXIWAY A	TW A	TAXIWAY	105	103,252	Р	AAC	60	Fair	4	29
TAXIWAY A	TW A	TAXIWAY	104	9,170	Р	AC	80	Satisfactory	1	3
TAXIWAY A	TW A	TAXIWAY	103	5,616	Р	AC	84	Satisfactory	1	1

Note: If new construction, then survey date = last construction date and PCI is set to 100 by MicroPAVER.

^{*} Sections not surveyed due to reasons such as re-sectioning, no escort, not accessible at the time of survey. Please refer to Section 3 for discussion on the updates to the ASTM D 5640 that may affect PCI in comparison to previous program update.

APPENDIX C

- BRANCH CONDITION REPORT
- SECTION CONDITION REPORT

Date: 4 /27/2015

Branch Condition Report

Pavement Database: FDOT NetworkID: TPF

Number of Sum Section Avg Section PCI Weighted **True Area** Average **Branch ID** Use **Sections** Length Width Standard Average (SqFt) PCI PCI (Ft) (Ft) Deviation AP (APRON) 2 1,700.00 87.50 165,919.16 **APRON** 10.50 82.11 73.50 APRU (APRON) 3 247.00 157.67 23,790.53 **APRON** 79.67 10.34 87.32 RW 18-36 (RUNWAY 18-36) 2,500.00 191,016.57 RUNWAY 85.00 1 75.00 85.00 0.00 3,608.00 RW 4-22 (RUNWAY 4-22) 360,800.00 **RUNWAY** 3 100.00 80.67 16.05 62.78 T/L HANG (TAXILANE TO EAST 1 600.00 25.00 29,573.00 **TAXIWAY** 94.00 0.00 94.00 HANGARS) TW A (TAXIWAY A) 139,742.93 **TAXIWAY** 6 3,372.00 40.83 81.00 10.57 66.49 TW B (TAXIWAY B) 2 340.00 16,466.45 **TAXIWAY** 45.00 75.00 18.00 82.78 TW C (TAXIWAY C) 2 575.00 40.00 24,005.00 **TAXIWAY** 66.00 11.00 61.57 TW CENTER (TAXIWAY CENTER) **TAXIWAY** 3 1,200.00 48.33 55,839.67 86.33 4.50 87.42 TW D (TAXIWAY D) **TAXIWAY** 2 1,075.00 40.00 46,607.85 69.50 24.50 88.39 TW E (TAXIWAY E) 4 525.00 45.00 23,901.82 **TAXIWAY** 81.25 12.89 75.07 TW F (TAXIWAY F) 2 2,600.00 35.00 98,144.00 **TAXIWAY** 79.00 10.00 87.04 TW G (TAXIWAY G) 1 300.00 30.00 12,333.00 **TAXIWAY** 94.00 0.00 94.00 TW T-HANG (TAXIWAY TO 3,500.00 20.00 72,024.05 **TAXIWAY** 53.00 0.00 53.00 1 T-HANGARS)

Date: 4 /27/2015

Branch Condition Report

Pavement Database: FDOT

Use Category	Number of Sections	Total Area (SqFt)	Arithmetic Average PCI	Average PCI STD.	Weighted Average PCI
APRON	5	189,709.69	77.20	10.83	82.76
RUNWAY	4	551,816.57	81.75	14.02	70.47
TAXIWAY	24	518,637.77	78.75	15.23	75.63
AII	33	1,260,164.03	78.88	14.55	74.45

Section Condition Report

Pavement Database: FDOT

NetworkID: TPF

Last Age Section ID Surface Hee Branch ID Last Rank Lanes True Area PCI Inspection Αt Const. (SqFt) Date Inspection Date AP (APRON) Ρ 4110 01/01/2011 AAC **APRON** 0 150,952.39 10/06/2014 3 84.00 AP (APRON) 4140 01/01/1986 AC **APRON** Ρ 14,966.77 10/06/2014 28 63.00 AP RU (APRON) 5105 01/01/2008 AAC **APRON** Ρ 3,153.64 10/06/2014 6 70.00 AP RU (APRON) Ρ 5110 01/01/2008 AAC **APRON** 0 4,385.84 10/06/2014 6 75.00 AP RU (APRON) Р 5115 01/01/2007 AC **APRON** 0 16,251.05 10/06/2014 7 94.00 RW 18-36 (RUNWAY 18-36) S 6205 01/01/2008 AAC RUNWAY 0 191,016.57 10/06/2014 6 85.00 RW 4-22 (RUNWAY 4-22) 6103 01/01/2007 **RUNWAY** Ρ 32,500.00 10/06/2014 93.00 AC RW 4-22 (RUNWAY 4-22) **RUNWAY** Ρ 310,500.00 10/06/2014 6105 01/01/2001 AAC 13 58.00 RW 4-22 (RUNWAY 4-22) Ρ 6110 01/01/2007 AAC **RUNWAY** 0 17.800.00 10/06/2014 7 91.00 T/L HANG (TAXILANE TO EAST **TAXIWAY** Р 800 01/01/2011 AC 29,573.00 10/06/2014 3 94.00 0 HANGARS) TW A (TAXIWAY A) 103 01/01/2007 AC **TAXIWAY** Ρ 0 5,615.69 10/06/2014 7 84.00 TW A (TAXIWAY A) 01/01/2007 **TAXIWAY** Ρ 9,170.00 10/06/2014 80.00 104 AC 0 7 TW A (TAXIWAY A) Ρ 105 01/01/1992 AAC **TAXIWAY** 0 103,252.19 10/06/2014 22 60.00 TW A (TAXIWAY A) Ρ 115 01/01/2008 AAC **TAXIWAY** 0 11,155.15 10/06/2014 6 88.00 TW A (TAXIWAY A) 120 01/01/2008 AAC **TAXIWAY** Ρ 0 5,876.45 10/06/2014 6 80.00 TW A (TAXIWAY A) 630 01/01/2007 AC **TAXIWAY** Р 4,673.45 10/06/2014 7 94.00 TW B (TAXIWAY B) **TAXIWAY** Ρ 150 01/01/1992 AAC 0 4,673.00 10/06/2014 22 57.00 TW B (TAXIWAY B) 205 01/01/2011 AAC **TAXIWAY** Ρ 11,793.45 10/06/2014 93.00 0 3 TW C (TAXIWAY C) AAC Р 305 01/01/2010 **TAXIWAY** 0 7,165.00 10/06/2014 4 77.00 TW C (TAXIWAY C) Ρ AC **TAXIWAY** 0 55.00 310 01/01/1965 16,840.00 10/06/2014 49 TW CENTER (TAXIWAY CENTER) 315 01/01/2008 AC **TAXIWAY** Ρ 0 11,056.09 10/06/2014 6 80.00 TW CENTER (TAXIWAY CENTER) Ρ 320 01/01/2008 AC **TAXIWAY** 0 11,536.12 10/06/2014 6 90.00 TW CENTER (TAXIWAY CENTER) 325 01/01/2008 AC **TAXIWAY** Ρ 0 33,247.46 10/06/2014 6 89.00 TW D (TAXIWAY D) 01/01/2011 **TAXIWAY** Ρ 420 AAC 0 41,269.85 10/06/2014 3 94.00 TW D (TAXIWAY D) Ρ **TAXIWAY** 0 425 01/01/1992 AAC 5,338.00 10/06/2014 22 45.00 TW E (TAXIWAY E) Ρ 505 01/01/2005 AAC **TAXIWAY** 2,353.21 10/06/2014 9 87.00

Date: 4 /27/2015

Section Condition Report

Pavement Database: FDOT Netv

NetworkID: TPF

Last Age Surface Branch ID Section ID Last Use Rank Lanes True Area PCI Αt Inspection Const. (SqFt) Date Inspection Date TW E (TAXIWAY E) Ρ 510 01/01/1965 AC **TAXIWAY** 11,125.79 10/06/2014 59.00 49 TW E (TAXIWAY E) **TAXIWAY** Ρ 4,952.00 10/06/2014 515 01/01/2011 AC 0 3 89.00 TW E (TAXIWAY E) **TAXIWAY** Ρ 5,470.82 10/06/2014 650 01/01/2008 AAC 0 6 90.00 TW F (TAXIWAY F) 605 01/01/2008 AAC **TAXIWAY** Ρ 0 88,517.00 10/06/2014 6 89.00 TW F (TAXIWAY F) 610 01/01/2008 AAC TAXIWAY Ρ 0 9,627.00 10/06/2014 6 69.00 TW G (TAXIWAY G) Р 750 01/01/2011 AC TAXIWAY 0 12,333.00 10/06/2014 3 94.00 TW T-HANG (TAXIWAY TO T-HANGARS) AC **TAXIWAY** Ρ 72,024.05 10/06/2014 705 01/01/1964 53.00

Section Condition Report

Pavement Database: FDOT

Age Category	Average Age At Inspection	Total Area (SqFt)	Number of Sections	Arithmetic Average PCI	PCI Standard Deviation	Weighted Average PCI
03-05	3.14	258,038.69	7	89.29	6.58	87.54
06-10	6.50	463,405.54	18	84.89	7.72	86.69
11-15	13.00	310,500.00	1	58.00	0.00	58.00
21-25	22.00	113,263.19	3	54.00	7.94	59.17
26-30	28.00	14,966.77	1	63.00	0.00	63.00
over 40	49.33	99,989.84	3	55.67	3.06	54.00
All	11.94	1,260,164.03	33	78.88	14.78	74.45

APPENDIX D

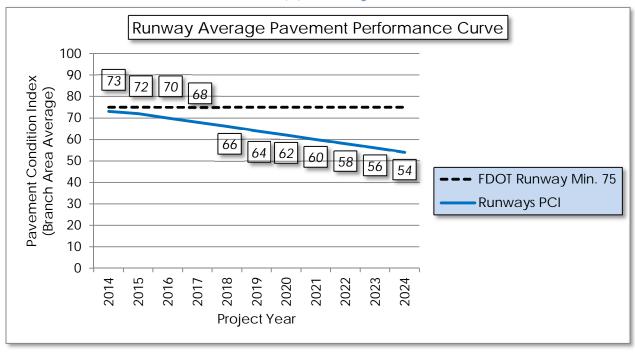
- PAVEMENT PERFORMANCE PREDICTION
- PAVEMENT PERFORMANCE BY PAVEMENT USE

Table D-1: Pavement Performance Prediction

					. 5/10			0.101				
Branch	Section	Current			Paver	ment P	erform	nance	Model	- PCI		
ID	ID	PCI	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
AP	4110	84	83	80	78	76	74	72	70	67	65	63
AP	4140	63	62	60	58	56	54	52	50	48	46	44
AP RU	5105	70	69	66	64	62	60	58	56	53	51	49
AP RU	5110	75	74	71	69	67	65	63	61	58	56	54
AP RU	5115	94	93	91	89	87	85	83	81	79	77	75
RW 18-36	6205	85	84	82	80	78	76	74	72	70	68	66
RW 4-22	6103	93	92	91	90	89	87	86	85	84	82	81
RW 4-22	6105	58	57	55	53	51	49	47	45	43	41	39
RW 4-22	6110	91	90	88	86	84	82	80	78	76	74	72
T/L HANG	800	94	93	92	90	89	88	86	85	84	82	81
TW A	103	84	83	82	80	79	78	76	75	74	72	71
TW A	104	80	79	78	76	75	74	72	71	70	68	67
TW A	105	60	59	57	55	53	52	50	48	46	44	42
TW A	115	88	87	85	83	81	80	78	76	74	72	70
TW A	120	80	79	77	75	73	72	70	68	66	64	62
TW A	630	94	93	92	90	89	88	86	85	84	82	81
TW B	150	57	56	54	52	50	49	47	45	43	41	39
TW B	205	93	92	90	88	86	85	83	81	79	77	75
TW C	305	77	76	74	72	70	69	67	65	63	61	59
TW C	310	55	54	53	51	50	49	47	46	45	43	42
TW CENTER	315	80	79	78	76	75	74	72	71	70	68	67
TW CENTER	320	90	89	88	86	85	84	82	81	80	78	77
TW CENTER	325	89	88	87	85	84	83	81	80	79	77	76
TW D	420	94	93	91	89	87	86	84	82	80	78	76
TW D	425	45	44	42	40	38	37	35	33	31	29	27
TW E	505	87	86	84	82	80	79	77	75	73	71	69
TW E	510	59	58	57	55	54	53	51	50	49	47	46

Pavement Evaluation Report - Peter O. Knight Airport

Branch	Section	Current	Pavement Performance Model - PCI									
ID	ID	PCI	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
TW E	515	89	88	87	85	84	83	81	80	79	77	76
TW E	650	90	89	87	85	83	82	80	78	76	74	72
TW F	605	89	88	86	84	82	81	79	77	75	73	71
TW F	610	69	68	66	64	62	61	59	57	55	53	51
TW G	750	94	93	92	90	89	88	86	85	84	82	81
TW T- HANG	705	53	52	51	49	48	47	45	44	43	41	40


Note: If new construction, then survey date = last construction date and PCI is set to 100 by MicroPAVER.

^{*} Sections not surveyed due to reasons such as re-sectioning, no escort, not accessible at the time of survey. Please refer to Section 3 for discussion on the updates to the ASTM D 5640 that may affect PCI in comparison to previous program update.

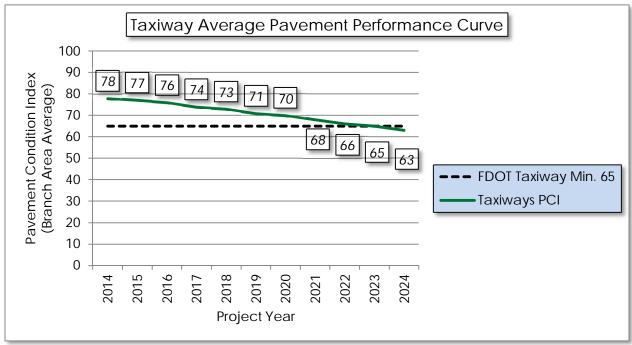
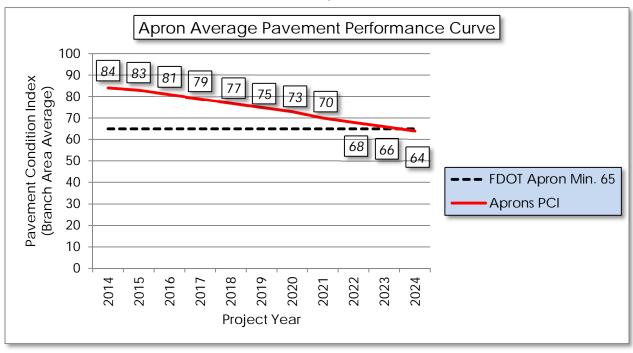


Figure D-1: Pavement Performance by Pavement Use

(a) Runway



(b) Taxiway

(c) Apron

APPENDIX E

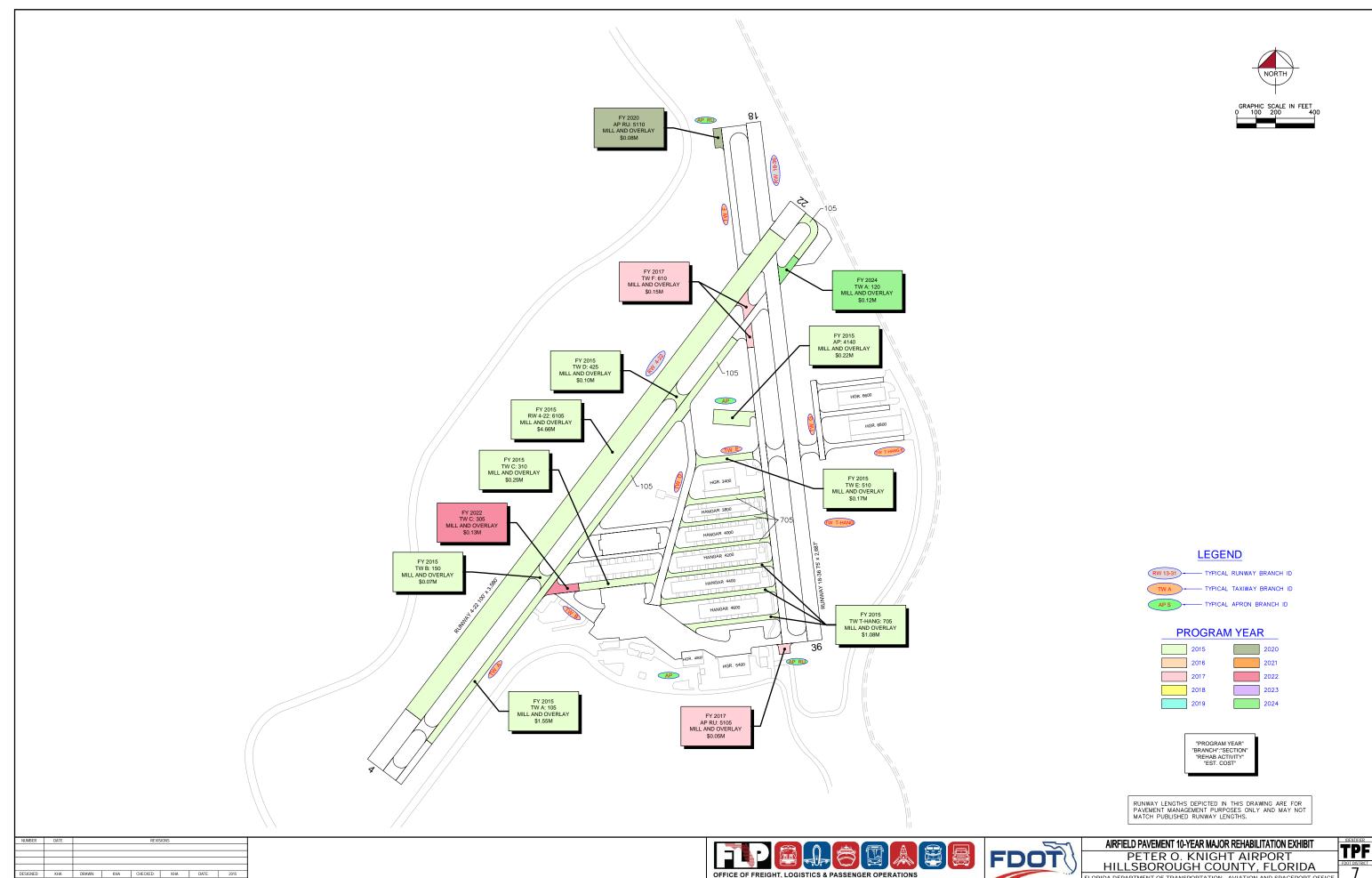
YEAR-1 PREVENTATIVE ACTIVITIES

Table E-1: Year-1 Preventative Activities

Branch Name	Branch ID	Section ID	Distress Description	Distress Severity	Work Description	Work Quantity	Work Unit	Unit Cost	W	ork Cost
APRON	AP	4110	DEPRESSION	L	Patching - AC Full Depth	1,381.90	SqFt	\$5.00	\$	6,909.57
APRON	AP	4110	L&TCR	L	Crack Sealing - AC	32.30	Ft	\$2.75	\$	88.89
APRON	AP	4110	OIL SPILLAGE	N	Surface Seal	254.00	SqFt	\$0.55	\$	139.70
APRON	AP	4110	RAVELING	L	Surface Seal	8,428.40	SqFt	\$0.55	\$	4,635.68
APRON	AP	4140	L&TCR	L	Crack Sealing - AC	1,704.20	Ft	\$2.75	\$	4,686.59
APRON	AP	4140	RAVELING	L	Surface Seal	14,767.20	SqFt	\$0.55	\$	8,122.03
APRON	AP RU	5105	DEPRESSION	L	Patching - AC Full Depth	81.20	SqFt	\$5.00	\$	405.94
APRON	AP RU	5105	L&TCR	L	Crack Sealing - AC	75.00	Ft	\$2.75	\$	206.29
APRON	AP RU	5105	RAVELING	L	Surface Seal	788.20	SqFt	\$0.55	\$	433.49
APRON	AP RU	5110	DEPRESSION	L	Patching - AC Full Depth	49.10	SqFt	\$5.00	\$	245.62
APRON	AP RU	5110	L&TCR	M	Crack Sealing - AC	7.00	Ft	\$2.75	\$	19.25
APRON	AP RU	5110	L&TCR	L	Crack Sealing - AC	162.00	Ft	\$2.75	\$	445.50
RUNWAY 18-36	RW 18-36	6205	DEPRESSION	L	Patching - AC Full Depth	251.30	SqFt	\$5.00	\$	1,256.34
RUNWAY 18-36	RW 18-36	6205	L&TCR	L	Crack Sealing - AC	1,676.20	Ft	\$2.75	\$	4,609.43
RUNWAY 18-36	RW 18-36	6205	RAVELING	L	Surface Seal	1,845.90	SqFt	\$0.55	\$	1,015.28

Branch Name	Branch ID	Section ID	Distress Description	Distress Severity	Work Description	Work Quantity	Work Unit	Unit Cost	\	Work Cost
RUNWAY 4-22	RW 4-22	6103	L&TCR	L	Crack Sealing - AC	3.30	Ft	\$2.75	\$	8.94
RUNWAY 4-22	RW 4-22	6105	BLOCK CR	L	Surface Seal	2,390.90	SqFt	\$0.55	\$	1,314.98
RUNWAY 4-22	RW 4-22	6105	DEPRESSION	L	Patching - AC Full Depth	3,071.10	SqFt	\$5.00	\$	15,355.60
RUNWAY 4-22	RW 4-22	6105	L&TCR	L	Crack Sealing - AC	33,933.20	Ft	\$2.75	\$	93,316.24
RUNWAY 4-22	RW 4-22	6105	L&TCR	M	Crack Sealing - AC	17.70	Ft	\$2.75	\$	48.79
RUNWAY 4-22	RW 4-22	6105	PATCHING	M	Patching - AC Full Depth	12.20	SqFt	\$5.00	\$	61.06
RUNWAY 4-22	RW 4-22	6105	RAVELING	M	Surface Seal	434.70	SqFt	\$0.55	\$	239.09
RUNWAY 4-22	RW 4-22	6105	RAVELING	L	Surface Seal	223,116.40	SqFt	\$0.55	\$	122,715.06
RUNWAY 4-22	RW 4-22	6110	L&TCR	L	Crack Sealing - AC	35.60	Ft	\$2.75	\$	97.90
TAXIWAY ALPHA	TW A	103	DEPRESSION	L	Patching - AC Full Depth	74.70	SqFt	\$5.00	\$	373.49
TAXIWAY ALPHA	TW A	103	L&TCR	L	Crack Sealing - AC	49.00	Ft	\$2.75	\$	134.75
TAXIWAY ALPHA	TW A	104	L&TCR	L	Crack Sealing - AC	144.10	Ft	\$2.75	\$	396.27
TAXIWAY ALPHA	TW A	104	RAVELING	L	Surface Seal	917.00	SqFt	\$0.55	\$	504.35
TAXIWAY ALPHA	TW A	105	BLOCK CR	L	Surface Seal	17,700.40	SqFt	\$0.55	\$	9,735.29
TAXIWAY ALPHA	TW A	105	DEPRESSION	L	Patching - AC Full Depth	555.40	SqFt	\$5.00	\$	2,776.97
TAXIWAY ALPHA	TW A	105	L&TCR	L	Crack Sealing - AC	12,832.80	Ft	\$2.75	\$	35,290.09

Branch Name	Branch ID	Section ID	Distress Description	Distress Severity	Work Description	Work Quantity	Work Unit	Unit Cost	V	Vork Cost
TAXIWAY ALPHA	TW A	105	RAVELING	L	Surface Seal	103,252.20	SqFt	\$0.55	\$	56,789.18
TAXIWAY ALPHA	TW A	115	L&TCR	L	Crack Sealing - AC	221.30	Ft	\$2.75	\$	608.69
TAXIWAY ALPHA	TW A	120	DEPRESSION	L	Patching - AC Full Depth	118.20	SqFt	\$5.00	\$	590.79
TAXIWAY ALPHA	TW A	120	L&TCR	L	Crack Sealing - AC	174.40	Ft	\$2.75	\$	479.71
TAXIWAY BRAVO	TW B	150	BLOCK CR	L	Surface Seal	162.00	SqFt	\$0.55	\$	89.10
TAXIWAY BRAVO	TW B	150	L&TCR	L	Crack Sealing - AC	440.00	Ft	\$2.75	\$	1,210.00
TAXIWAY BRAVO	TW B	150	RAVELING	L	Surface Seal	4,673.00	SqFt	\$0.55	\$	2,570.17
TAXIWAY BRAVO	TW B	150	SWELLING	М	Patching - AC Full Depth	26.70	SqFt	\$5.00	\$	133.64
TAXIWAY BRAVO	TW B	205	DEPRESSION	L	Patching - AC Full Depth	50.90	SqFt	\$5.00	\$	254.27
TAXIWAY CHARLIE	TW C	305	DEPRESSION	L	Patching - AC Full Depth	59.20	SqFt	\$5.00	\$	296.10
TAXIWAY CHARLIE	TW C	305	RAVELING	L	Surface Seal	1,791.20	SqFt	\$0.55	\$	985.20
TAXIWAY CHARLIE	TW C	310	BLOCK CR	L	Surface Seal	15,577.00	SqFt	\$0.55	\$	8,567.42
TAXIWAY CHARLIE	TW C	310	DEPRESSION	L	Patching - AC Full Depth	40.50	SqFt	\$5.00	\$	202.32
TAXIWAY CHARLIE	TW C	310	RAVELING	L	Surface Seal	15,577.00	SqFt	\$0.55	\$	8,567.42
TAXIWAY CENTER	TW CENTER	315	L&TCR	L	Crack Sealing - AC	140.00	Ft	\$2.75	\$	385.12
TAXIWAY CENTER	TW CENTER	315	RAVELING	L	Surface Seal	1,105.60	SqFt	\$0.55	\$	608.09


Branch Name	Branch ID	Section ID	Distress Description	Distress Severity	Work Description	Work Quantity	Work Unit	Unit Cost	W	ork Cost
TAXIWAY CENTER	TW CENTER	320	L&TCR	L	Crack Sealing - AC	58.40	Ft	\$2.75	\$	160.74
TAXIWAY CENTER	TW CENTER	325	L&TCR	L	Crack Sealing - AC	483.60	Ft	\$2.75	\$	1,329.90
TAXIWAY DELTA	TW D	425	BLOCK CR	L	Surface Seal	220.00	SqFt	\$0.55	\$	121.00
TAXIWAY DELTA	TW D	425	DEPRESSION	L	Patching - AC Full Depth	98.90	SqFt	\$5.00	\$	494.73
TAXIWAY DELTA	TW D	425	L&TCR	L	Crack Sealing - AC	513.00	Ft	\$2.75	\$	1,410.75
TAXIWAY DELTA	TW D	425	PATCHING	M	Patching - AC Full Depth	16.00	SqFt	\$5.00	\$	80.25
TAXIWAY DELTA	TW D	425	RAVELING	M	Surface Seal	4.00	SqFt	\$0.55	\$	2.20
TAXIWAY DELTA	TW D	425	RAVELING	L	Surface Seal	5,330.00	SqFt	\$0.55	\$	2,931.52
TAXIWAY ECHO	TW E	505	L&TCR	L	Crack Sealing - AC	48.00	Ft	\$2.75	\$	132.00
TAXIWAY ECHO	TW E	510	DEPRESSION	L	Patching - AC Full Depth	349.70	SqFt	\$5.00	\$	1,748.57
TAXIWAY ECHO	TW E	510	L&TCR	L	Crack Sealing - AC	883.10	Ft	\$2.75	\$	2,428.52
TAXIWAY ECHO	TW E	510	RAVELING	L	Surface Seal	11,125.80	SqFt	\$0.55	\$	6,119.24
TAXIWAY ECHO	TW E	510	SHOVING	L	Grinding (Localized)	32.70	Ft	\$2.10	\$	68.63
TAXIWAY ECHO	TW E	515	L&TCR	L	Crack Sealing - AC	44.00	Ft	\$2.75	\$	121.00
TAXIWAY ECHO	TW E	650	L&TCR	L	Crack Sealing - AC	16.00	Ft	\$2.75	\$	44.00
TAXIWAY FOXTROT	TW F	605	L&TCR	L	Crack Sealing - AC	1,336.00	Ft	\$2.75	\$	3,674.03

Branch Name	Branch ID	Section ID	Distress Description	Distress Severity	Work Description	Work Quantity	Work Unit	Unit Cost	١	Work Cost
TAXIWAY FOXTROT	TW F	610	L&TCR	L	Crack Sealing - AC	232.90	Ft	\$2.75	\$	640.45
TAXIWAY FOXTROT	TW F	610	RAVELING	L	Surface Seal	9,627.00	SqFt	\$0.55	\$	5,294.89
TAXIWAY TO T- HANGARS	TW T- HANG	705	DEPRESSION	М	Patching - AC Full Depth	4,063.80	SqFt	\$5.00	\$	20,319.13
TAXIWAY TO T- HANGARS	TW T- HANG	705	DEPRESSION	L	Patching - AC Full Depth	2,842.70	SqFt	\$5.00	\$	14,213.62
TAXIWAY TO T- HANGARS	TW T- HANG	705	L&TCR	L	Crack Sealing - AC	2,730.10	Ft	\$2.75	\$	7,507.70
TAXIWAY TO T- HANGARS	TW T- HANG	705	RAVELING	L	Surface Seal	48,417.20	SqFt	\$0.55	\$	26,629.70
TAXIWAY TO T- HANGARS	TW T- HANG	705	RUTTING	L	Patching - AC Full Depth	366.90	SqFt	\$5.00	\$	1,834.73
								Total =	\$	495,232.99

APPENDIX F

- AIRFIELD PAVEMENT 10-YEAR MAJOR REHABILITATION
 EXHIBIT
- AIRFIELD PAVEMENT 10-YEAR MAJOR REHABILITATION
 TABLE

PETER O. KNIGHT AIRPORT HILLSBOROUGH COUNTY, FLORIDA FLORIDA DEPARTMENT OF TRANSPORTATION - AVIATION AND SPACEPORT OFFICE

Table F-1: Airfield Pavement 10-Year Major Rehabilitation Table

Year	Branch ID	Section ID	Major M&R Costs*	PCI Before M&R	M&R Activity	PCI After M&R
2015	AP	4140	\$ 224,502.00	62	Mill and Overlay	100
2015	RW 4-22	6105	\$ 4,657,501.00	57	Mill and Overlay	100
2015	TW A	105	\$ 1,548,783.00	59	Mill and Overlay	100
2015	TW B	150	\$ 70,095.00	56	Mill and Overlay	100
2015	TW C	310	\$ 252,600.00	54	Mill and Overlay	100
2015	TW D	425	\$ 96,591.00	44	Mill and Overlay	100
2015	TW E	510	\$ 166,887.00	58	Mill and Overlay	100
2015	TW T-HANG	705	\$ 1,080,361.00	52	Mill and Overlay	100
2017	AP RU	5105	\$ 50,185.00	65	Mill and Overlay	100
2017	TW F	610	\$ 153,199.00	65	Mill and Overlay	100
2020	AP RU	5110	\$ 76,266.00	64	Mill and Overlay	100
2022	TW C	305	\$ 132,181.00	65	Mill and Overlay	100
2024	TW A	120	\$ 115,012.00	65	Mill and Overlay	100
_		Total =	\$ 8,624,163.00			-

^{*} Costs are adjusted for inflation AT 3%

APPENDIX G

PHOTOGRAPHS

Apron, Section 4110, Sample Unit 302 – Low Severity (45) Depression, Low Severity (52) Raveling, Low Severity (57) Weathering

Taxiway Center, Section 315, Sample Unit 202 – Low Severity (48) Longitudinal and Transverse Cracking, Low Severity (52) Raveling, Low Severity (57) Weathering

Runway 4-22, Section 6105, Sample Unit 125 – Low Severity (45) Depression, Low Severity (48) Longitudinal and Transverse Cracking, Low Severity (52) Raveling, Medium Severity (52) Raveling, Low Severity (56) Swelling

Runway 4-22, Section 6105, Sample Unit 109 – Low Severity (48) Longitudinal and Transverse Cracking, Low Severity (52) Raveling, Medium Severity (52) Raveling, Low Severity (56) Swelling

Taxiway Alpha, Section 103, Sample Unit 97 – Low Severity (45) Depression, Low Severity (48) Longitudinal and Transverse Cracking, Low Severity (57) Weathering

Taxiway Alpha, Section 105, Sample Unit 105 - Low Severity (48) Longitudinal and Transverse Cracking, Low Severity (52) Raveling

Runway 18-36, Section 6205, Sample Unit 114 – Low Severity (48) Longitudinal and Transverse Cracking, Low Severity (57) Weathering

Apron Run-Up, Section 5110, Sample Unit 100 – Low Severity (48) Longitudinal and Transverse Cracking, Low Severity (57) Weathering

Taxiway Echo, Section 650, Sample Unit 300 – Low Severity (48) Longitudinal and Transverse Cracking, Low Severity (57) Weathering

Taxiway Charlie, Section 310, Sample Unit 101 - Low Severity (43) Block Cracking, Low Severity (52) Raveling

Taxiway Echo, Section 510, Sample Unit 100 – Low Severity (45) Depression , Low Severity (48) Longitudinal and Transverse Cracking, Low Severity (52) Raveling

APPENDIX H

DISTRESS DATA – RE-INSPECTION REPORT

FDOT

Network: TPF Name: PETER O. KNIGHT AI	RPORT						
Branch: AP Name: APRON			Use: AP	RON	Area:	165,919.16SqFt	
Section: 4110 of 2 From: - Surface: AAC Family: FDOT-SAPMP-RL-	AP-AAC		То: -		Zone:	Last Const.: Category:	01/01/2011 Rank: P
Area: 150,952.39SqFt Length: 1,500.00Ft Shoulder: Street Type: Grade: 0.00	Lanes:	Wid 0	th: 100.001	Ft			
Section Comments:							
Last Insp. Date: 10/06/2014 Total Samples: 34 St. Conditions: PCI: 84 Inspection Comments:	urveyed: 4	1					
Sample Number: 302 Type: R Sample Comments:	Area:		3,933.00SqFt		PCI = 83		
45 DEPRESSION		L	40.00		Comments	:	
52 RAVELING		L	16.00		Comments	:	
49 OIL SPILLAGE		N	24.00	_	Comments		
57 WEATHERING		L	3,917.00	SqFt	Comments	:	
Sample Number: 500 Type: R Sample Comments:	Area:		5,000.00SqFt		PCI = 85		
45 DEPRESSION		L	4.00		Comments	:	
52 RAVELING		L	500.00		Comments	:	
57 WEATHERING		L	4,500.00	SqFt	Comments	:	
Sample Number: 603 Type: R Sample Comments:	Area:		5,000.00SqFt		PCI = 76		
45 DEPRESSION		L	77.00	SqFt	Comments	:	
48 LONGITUDINAL/TRANSVERSE CRACKING		L	4.00	Ft	Comments	:	
45 DEPRESSION		L	32.00	SqFt	Comments	:	
52 RAVELING		L	3.00	_	Comments		
52 RAVELING		L	500.00	_	Comments		
57 WEATHERING		L	4,497.00	SqFt	Comments	:	
Sample Number: 606 Type: R Sample Comments:	Area:		4,747.00SqFt		PCI = 92		
52 RAVELING		L	4.00	SqFt	Comments	:	
52 RAVELING		L	8.00	SqFt	Comments	:	
52 RAVELING		L	12.00	_	Comments	:	
57 WEATHERING		L	4,723.00	SaFt	Comments	:	

FDOT

Report Generated Date: April 27, 2015

Network:	TPF	Name: Pl	ETER O. K	NIGHT AIRF	PORT					
Branch:	AP	Name: A	PRON				Use: APRON	Area:	165,919.16SqFt	
Section:	4140	of 2	From:	-			То: -		Last Const.:	01/01/1986
Surface:	AC	Family:	FDOT-SA	APMP-RL-AI	P-AC			Zone:	Category:	Rank: P
Area:	14,966.77SqFt	Leng	gth:	200.00Ft		Width:	75.00Ft			
Shoulder:	Street T	ype:	Grade:	0.00	Lanes:	0				

Last Insp. Date: 10/06/2014 Total Samples: 4 Surveyed: 1

Conditions: PCI: 63 Inspection Comments:

Sample Number: 102 Type: R	Area:	3,750.00SqFt	PCI = 63
Sample Comments:			
48 LONGITUDINAL/TRANSVERSE CRACKING	I	427.00 Ft	Comments:
50 PATCHING	I	50.00 SqFt	Comments:
52 RAVELING	I	3,700.00 SqFt	Comments:

FDOT

Report Generated Date: April 27, 2015

Network:	TPF	Name: PETER O. k	NIGHT AIRPO	ORT				
Branch:	AP RU	Name: APRON			Use: APRON	Area:	23,790.53SqFt	
Section: Surface:	5105 AAC	of 3 From: Family: FDOT-S		AAC	То: -	Zone:	Last Const.: Category:	01/01/2008 Rank: P
Area:	3,153.64SqFt	Length:	15.00Ft	Width:	200.00Ft	Zone.	Category.	Kalik. P
Shoulder:	Street Ty	pe: Grade:	0.00	Lanes: 0				

Last Insp. Date: 10/06/2014 Total Samples: 1 Surveyed: 1

Conditions: PCI: 70 Inspection Comments:

Sample Number: 600 Ty	rpe: R Area:	:	3,153.00SqFt		PCI = 70
Sample Comments:					
48 LONGITUDINAL/TRANSVE	ERSE CRACKING	L	75.00	Ft	Comments:
45 DEPRESSION		L	49.00	SqFt	Comments:
52 RAVELING		L	788.00	SqFt	Comments:
57 WEATHERING		L	2,365.00	SqFt	Comments:

FDOT

Report Generated Date: April 27, 2015

Name: APRON		Use: APRON	Area:	23,790.53SqFt	
				25,770.555q1 t	
of 3 From: - Family: FDOT-SAPMP-RL-	-AP-AAC	То: -	Zone:	Last Const.: Category:	01/01/2008 Rank: P
8	t Width:	200.00Ft			
	Length: 22.00F De: Grade: 0.00			8	

Section Comments:

Last Insp. Date: 10/06/2014 Total Samples: 1 Surveyed: 1

Conditions: PCI: 75 Inspection Comments:

San	nple Number:	100	Type: R		Area:		4,385.84SqFt		PCI = 75
San	ple Comments:								
48	LONGITUDI	NAL	TRANSVERSE	CRACKING		L	162.00	Ft	Comments:
48	LONGITUDI	NAL,	TRANSVERSE	CRACKING		M	7.00	Ft	Comments:
57	WEATHERIN	IG				L	4,385.00	SqFt	Comments:
45	DEPRESSIC	N				L	25.00	SaFt	Comments:

FDOT

Report Generated Date: April 27, 2015

Network: TPF Name: PETER O. KNIGHT AIRPORT

Branch: AP RU Name: APRON Use: APRON Area: 23,790.53SqFt

Section: 5115 of 3 From: - To: - Last Const.: 01/01/2007

73.00Ft

Zone:

Category:

Rank: P

Surface: AC Family: FDOT-SAPMP-RL-AP-AC

Area: 16,251.05SqFt Length: 210.00Ft Width: Shoulder: Street Type: Grade: 0.00 Lanes: 0

• •

Section Comments:

Last Insp. Date: 10/06/2014 Total Samples: 5 Surveyed: 1

Conditions: PCI: 94 Inspection Comments:

Sample Number: 202 Type: R Area: 3,650.00SqFt PCI = 94

Sample Comments:

57 WEATHERING L 3,650.00 SqFt Comments:

FDOT

Report Generated Date: April 27, 2015							
Network: TPF Name: PETER O. KNIGHT AIRF	PORT						
Branch: RW 18-36 Name: RUNWAY 18-36			Use: RU	INWAY	Area:	191,016.57SqFt	
Section: 6205 of 1 From: - Surface: AAC Family: FDOT-SAPMP-RL-RV	W-AAC		То: -		Zone:	Last Const.: Category:	01/01/2008 Rank: S
Area: 191,016.57SqFt Length: 2,500.00Ft		Widt	h: 75.00	Ft		2 ,	
Shoulder: Street Type: Grade: 0.00	Lanes:	0					
Section Comments:							
Last Insp. Date: 10/06/2014 Total Samples: 51 Sur Conditions: PCI: 85 Inspection Comments:	veyed: 1	2					
Sample Number: 102 Type: R Sample Comments:	Area:	3	3,750.00SqFt		PCI = 77		
48 LONGITUDINAL/TRANSVERSE CRACKING		L	23.00	Ft	Comments	:	
50 PATCHING		L	336.00		Comments		
57 WEATHERING		L	3,414.00	SqFt	Comments	:	
Sample Number: 108 Type: R Sample Comments:	Area:	3	3,750.00SqFt		PCI = 84		
48 LONGITUDINAL/TRANSVERSE CRACKING		L	39.00		Comments	:	
50 PATCHING		L	90.00	_	Comments		
57 WEATHERING		L	3,660.00	SqFt	Comments	:	
Sample Number: 114 Type: R Sample Comments:	Area:	3	3,750.00SqFt		PCI = 86		
48 LONGITUDINAL/TRANSVERSE CRACKING		L	97.00		Comments		
57 WEATHERING		L	3,750.00	SqFt	Comments	:	
Sample Number: 118 Type: R Sample Comments:	Area:	3	3,750.00SqFt		PCI = 88		
48 LONGITUDINAL/TRANSVERSE CRACKING		L	63.00		Comments		
57 WEATHERING		L	3,750.00	SqFt	Comments	:	
Sample Number: 122 Type: R Sample Comments:	Area:	3	3,750.00SqFt		PCI = 65		
48 LONGITUDINAL/TRANSVERSE CRACKING		L	37.00	Ft	Comments	:	
50 PATCHING		L	750.00		Comments		
45 DEPRESSION		L	44.00		Comments		
57 WEATHERING		L	3,000.00	SqFt	Comments	:	
Sample Number: 130 Type: R Sample Comments:	Area:	3	3,750.00SqFt		PCI = 85		
48 LONGITUDINAL/TRANSVERSE CRACKING		L	23.00		Comments		
57 WEATHERING		L	3,650.00		Comments		
52 RAVELING		L	100.00	SqFt	Comments	:	
Sample Number: 133 Type: R Sample Comments:	Area:		3,750.00SqFt	a =:	PCI = 85		
50 PATCHING		L	42.00		Comments		
48 LONGITUDINAL/TRANSVERSE CRACKING 57 WEATHERING		L L	60.00 3,708.00		Comments Comments		
Sample Number: 137 Type: R Sample Comments:	Area:	3	3,750.00SqFt		PCI = 94		

FDOT

57 WEATHERING			L	3,750.00 Sql	Ft Comments:
Sample Number: 141 7	Гуре: R	Area:		2,625.00SqFt	PCI = 89
48 LONGITUDINAL/TRANSV	VERSE CRACKING		L	43.00 Ft	Comments:
57 WEATHERING			L	2,625.00 Sql	Ft Comments:
Sample Number: 143 Tample Comments:	Гуре: R	Area:		3,750.00SqFt	PCI = 86
52 RAVELING			L	324.00 Sql	Ft Comments:
57 WEATHERING			L	3,426.00 Sql	Ft Comments:
Sample Number: 147 T	Гуре: R	Area:		3,750.00SqFt	PCI = 94
57 WEATHERING			L	3,750.00 Sql	Ft Comments:
Sample Number: 150 Tample Comments:	Гуре: R	Area:		3,750.00SqFt	PCI = 94
57 WEATHERING			L	3,750.00 Sql	Ft Comments:

FDOT

Network:	TPF	Name:	PETER O. KN	NIGHT AIRPO	RT							
Branch:	RW 4-22	Name:	RUNWAY 4-	22			Use: RU	JNWAY	Area:	360,800.00SqFt		
Section:	6103	of 3	From:	-			То: -			Last Const.:	01/01/20	007
Surface:	AC	Family	: FDOT-SA	PMP-RL-RW	AC				Zone:	Category:	Rank:	P
Area:	32,500.00SqFt	Le	ngth:	325.00Ft		Width	100.00	Ft				
Shoulder:	Street T	ype:	Grade:	0.00	Lanes:	0						
Last Insp. l	Date: 10/06/20 s: PCI: 93)14 Total Sa	mples: 7	Surve	yed: 2	2						
Last Insp. l	Date: 10/06/20 s: PCI: 93)14 Total Sa	mples: 7	Surve	eyed: 2	2						
Last Insp. 1 Conditions Inspection C	Date: 10/06/20 s: PCI: 93 Comments:		mples: 7	Surve	yed: 2		000.00SqFt		PCI = 94			
Last Insp. I Conditions Inspection C Sample Nu Sample Con	Date: 10/06/20 s: PCI: 93 Comments:			Surve			000.00SqFt 5,000.00	SqFt	PCI = 94 Comment	s:		
Last Insp. I Conditions Inspection C Sample Nu Sample Con	Date: 10/06/20 s: PCI: 93 Comments: umber: 96 mments: THERING umber: 99	Тур		Surve		5, L	•	SqFt		s:		

FDOT

Network: TPF Name: PETER O. KNIGHT AIR	PORT					
Branch: RW 4-22 Name: RUNWAY 4-22			Use: RUNW	'AY Area:	360,800.00SqFt	
Section: 6105 of 3 From: -			То: -		Last Const.:	01/01/2001
Surface: AAC Family: FDOT-SAPMP-RL-R	W-AAC			Zone:	Category:	Rank: P
Area: 310,500.00SqFt Length: 3,105.00Ft		Wid	th: 100.00Ft			
Shoulder: Street Type: Grade: 0.00	Lanes:	0				
Section Comments:						
Last Insp. Date: 10/06/2014 Total Samples: 63 Su	rveyed: 1	14				
Conditions: PCI: 58						
Inspection Comments:						
Sample Number: 105 Type: R	Area:		5,000.00SqFt	PCI = 54		
Sample Comments:		_	20 00 0	-Dt G	L •	
56 SWELLING 50 PATCHING		L	20.00 Sql			
		L	140.00 Sql			
50 PATCHING		L	690.00 Sql			
50 PATCHING 52 RAVELING		L	220.00 Sql 323.00 Sql			
52 RAVELING 52 RAVELING		L	-	•		
		L L	3,627.00 Sql 488.00 Ft			
		М	4.00 Ft			
48 LONGITUDINAL/TRANSVERSE CRACKING		IvI	4.00 FC	Commen	Ls.	
Sample Number: 109 Type: R Sample Comments:	Area:		5,000.00SqFt	PCI = 63		
56 SWELLING		L	25.00 Sq1	•		
52 RAVELING		M	50.00 Sq	Ft Comment	ts:	
52 RAVELING		L	250.00 Sq	[Ft Comment	ts:	
48 LONGITUDINAL/TRANSVERSE CRACKING		L	404.00 Ft			
50 PATCHING		L	800.00 Sql	Ft Comment	ts:	
Sample Number: 114 Type: R	Area:		5,000.00SqFt	PCI = 56		
Sample Comments:		_	40 00 g	-Et Common on		
45 DEPRESSION		L	49.00 Sql			
45 DEPRESSION		L	48.00 Sql			
56 SWELLING		L	50.00 Sql			
50 PATCHING 49 LONGITUDINAL (TRANSVERSE CRACKING		L	225.00 Sql			
48 LONGITUDINAL/TRANSVERSE CRACKING 48 LONGITUDINAL/TRANSVERSE CRACKING		L L	245.00 Ft 260.00 Ft			
52 RAVELING		Г	50.00 FC			
52 RAVELING 52 RAVELING		L	4,725.00 Sql			
Sample Number: 121 Type: R	Area:		5,000.00SqFt	PCI = 58		
Sample Comments:	mou.		-			
50 PATCHING		L	6.00 Sq		ts:	
45 DEPRESSION		L	16.00 Sq		ts:	
56 SWELLING		L	25.00 Sq			
52 RAVELING		L	80.00 Sq		ts:	
52 RAVELING		L	4,913.00 Sql		ts:	
48 LONGITUDINAL/TRANSVERSE CRACKING		L	100.00 Ft			
48 LONGITUDINAL/TRANSVERSE CRACKING		L	367.00 Ft			
50 PATCHING		М	0.50 Sql	Ft Comment	ts:	
Sample Number: 123 Type: R Sample Comments:	Area:		5,000.00SqFt	PCI = 61		

FDOT

Report Generated Date: April 27, 2015						
56 SWELLING		L	50.00	Saft	Comments:	
45 DEPRESSION		L	90.00		Comments:	
52 RAVELING		L	130.00	_	Comments:	
52 RAVELING		L	4,870.00		Comments:	
48 LONGITUDINAL/TRANSVERSE CRACKING		L	443.00		Comments:	
48 LONGITUDINAL/TRANSVERSE CRACKING		L	100.00	Ft	Comments:	
Sample Number: 125 Type: R Sample Comments:	Area:		5,000.00SqFt		PCI = 53	
56 SWELLING		L	150.00	SqFt	Comments:	
45 DEPRESSION		L	80.00		Comments:	
45 DEPRESSION		L	6.00	SqFt	Comments:	
52 RAVELING		L	250.00	SqFt	Comments:	
52 RAVELING		M	45.00	SqFt	Comments:	
48 LONGITUDINAL/TRANSVERSE CRACKING		L	636.00	Ft	Comments:	
Sample Number: 130 Type: R Sample Comments:	Area:		5,000.00SqFt		PCI = 52	
56 SWELLING		L	200.00	SqFt	Comments:	
45 DEPRESSION		L	42.00		Comments:	
45 DEPRESSION		L	63.00	SqFt	Comments:	
45 DEPRESSION		L	35.00	SqFt	Comments:	
52 RAVELING		L	350.00	SqFt	Comments:	
50 PATCHING		L	168.00	SqFt	Comments:	
48 LONGITUDINAL/TRANSVERSE CRACKING		L	659.00	Ft	Comments:	
52 RAVELING		L	4,482.00	SqFt	Comments:	
Sample Number: 134 Type: R Sample Comments:	Area:		5,000.00SqFt		PCI = 65	
56 SWELLING		L	50.00	SqFt	Comments:	
52 RAVELING		L	64.00	SqFt	Comments:	
48 LONGITUDINAL/TRANSVERSE CRACKING		L	493.00	Ft	Comments:	
52 RAVELING		L	4,936.00	SqFt	Comments:	
Sample Number: 140 Type: R Sample Comments:	Area:		5,000.00SqFt		PCI = 63	
56 SWELLING		L	125.00	SqFt	Comments:	
52 RAVELING		L	50.00	SqFt	Comments:	
52 RAVELING		L	4,950.00		Comments:	
48 LONGITUDINAL/TRANSVERSE CRACKING		L	532.00	Ft	Comments:	
Sample Number: 143 Type: R Sample Comments:	Area:		5,000.00SqFt		PCI = 57	
45 DEPRESSION		L	36.00		Comments:	
45 DEPRESSION		L	49.00	_	Comments:	
56 SWELLING		L	100.00		Comments:	
52 RAVELING		L	250.00	_	Comments:	
52 RAVELING		L	4,750.00	SqFt	Comments:	
48 LONGITUDINAL/TRANSVERSE CRACKING		L	727.00	Ft	Comments:	
Sample Number: 150 Type: R Sample Comments:	Area:		5,000.00SqFt		PCI = 51	
45 DEPRESSION		L	80.00	SqFt	Comments:	
43 BLOCK CRACKING		L	154.00		Comments:	
56 SWELLING		L	39.00		Comments:	
52 RAVELING		L	500.00		Comments:	
52 RAVELING		M		SqFt	Comments:	
48 LONGITUDINAL/TRANSVERSE CRACKING		L	657.00	Ft	Comments:	

Sample Number: 153 Type: R	Area:		5,000.00SqFt		PCI = 50	
Sample Comments:						
48 LONGITUDINAL/TRANSVERSE CRACKING		L	665.00	Ft	Comments:	
50 PATCHING		L	130.00	SqFt	Comments:	
45 DEPRESSION		L	49.00	SqFt	Comments:	
56 SWELLING		L	50.00	SqFt	Comments:	
52 RAVELING		L	750.00		Comments:	
57 WEATHERING		L	4,120.00	_	Comments:	
Sample Number: 156 Type: R	Area:		5,000.00SqFt		PCI = 63	
Sample Comments:						
48 LONGITUDINAL/TRANSVERSE CRACKING		L	362.00	Ft	Comments:	
43 BLOCK CRACKING		L	385.00	SqFt	Comments:	
52 RAVELING		L	750.00	SqFt	Comments:	
52 RAVELING		L	4,250.00	SqFt	Comments:	
Sample Number: 158 Type: R	Area:		5,000.00SqFt		PCI = 67	
Sample Comments:			-			
48 LONGITUDINAL/TRANSVERSE CRACKING		L	512.00	Ft	Comments:	
52 RAVELING		L	450.00	SqFt	Comments:	
52 RAVELING		L	4,550.00	_	Comments:	

FDOT

Report Generated Date: April 27, 2015

Network: TPF Name: PETER O. KNIGHT AIRPORT Branch: RW 4-22 Name: RUNWAY 4-22 Use: RUNWAY Area: 360,800.00SqFt Section: 6110 From: -То: -Last Const.: 01/01/2007 of 3 Family: FDOT-SAPMP-RL-RW-AAC Surface: Zone: Category: Rank: P AAC

100.00Ft

Area: 17,800.00SqFt Length: 178.00Ft Width:

Shoulder: Street Type: Grade: 0.00 Lanes: 0

Section Comments:

Last Insp. Date: 10/06/2014 Total Samples: 4 Surveyed: 1

Conditions: PCI: 91 Inspection Comments:

Sample Number: 167 Type: R Area: 5,000.00SqFt PCI = 91

Sample Comments:

48 LONGITUDINAL/TRANSVERSE CRACKING L 10.00 Ft Comments:

57 WEATHERING L 5,000.00 SqFt Comments:

FDOT

Report Generated Date: April 27, 2015

Street Type:

Network: TPF Name: PETER O. KNIGHT AIRPORT Branch: T/L HANG Name: TAXILANE TO EAST HANGARS Use: TAXIWAY Area: 29,573.00SqFt Section: 800 From: -То: -Last Const.: 01/01/2011 of 1 Family: FDOT-SAPMP-RL-TW-AC Rank: P Surface: Zone: Category: ACArea: 29,573.00SqFt Length: 600.00Ft Width: 25.00Ft

Lanes: 0

Section Comments:

Shoulder:

Last Insp. Date: 10/06/2014 Total Samples: 6 Surveyed: 1

Grade: 0.00

Conditions: PCI: 94 Inspection Comments:

Sample Number: 303 Type: R Area: 3,963.00SqFt PCI = 94

Sample Comments:

57 WEATHERING L 3,963.00 SqFt Comments:

FDOT

Report Generated Date: April 27, 2015

Network:	TPF	Name: PETER O. k	NIGHT AIRP	ORT					
Branch:	TW A	Name: TAXIWAY	A			Use: TAXIWAY	Area:	139,742.93SqFt	
Section:	103	of 6 From:				То: -		Last Const.:	01/01/2007
Surface:	AC	Family: FDOT-S	APMP-RL-TV	V-AC			Zone:	Category:	Rank: P
Area:	5,615.69SqFt	Length:	100.00Ft		Width:	50.00Ft			
Shoulder:	Street Ty	pe: Grade:	0.00	Lanes:	0				

Section Comments:

Last Insp. Date: 10/06/2014 Total Samples: 1 Surveyed: 1

Conditions: PCI: 84 Inspection Comments:

Sample Number: 97 Type: R	Area:	5,615.69SqFt	PCI = 84
Sample Comments:			
48 LONGITUDINAL/TRANSVERSE CRACKING	G L	49.00 Ft	Comments:
45 DEPRESSION	L	44.00 SqFt	Comments:
57 WEATHERING	L	5,615.00 SqFt	Comments:

FDOT

Report Generated Date: April 27, 2015

Network: TPF Name: PETER O. KNIGHT AIRPORT Branch: TW A Name: TAXIWAY A Use: TAXIWAY Area: 139,742.93SqFt Section: 104 From: -То: -Last Const.: 01/01/2007 of 6 Family: FDOT-SAPMP-RL-TW-AC Surface: Zone: Category: Rank: P AC

35.00Ft

Area: 9,170.00SqFt Length: 262.00Ft Width:

Shoulder: Street Type: Grade: 0.00 Lanes: 0

Section Comments:

Last Insp. Date: 10/06/2014 Total Samples: 3 Surveyed: 1

Conditions: PCI: 80 Inspection Comments:

3,500.00SqFt PCI = 80Sample Number: Type: R Area: Sample Comments: 48 LONGITUDINAL/TRANSVERSE CRACKING $_{\rm L}$ 55.00 Ft Comments: 350.00 SqFt 52 RAVELING L Comments: 57 WEATHERING $_{\rm L}$ 3,150.00 SqFt Comments:

FDOT

Report Generated Date: A	pril 27, 2015						
Network: TPF	Name: PETER O. KNIC	GHT AIRPORT					
Branch: TW A	Name: TAXIWAY A			Use: TAXIWAY	Area: 1	39,742.93SqFt	
Section: 105	of 6 From: -			То: -		Last Const.:	01/01/1992
Surface: AAC	Family: FDOT-SAPM	/IP-RL-TW-AAC			Zone:	Category:	Rank: P
Area: 103,252.19SqFt	Length: 2,5	00.00Ft	Wi	dth: 40.00Ft			
Shoulder: Street T	ype: Grade: 0.	00 Lanes:	: 0				
Section Comments:							
Last Insp. Date: 10/06/20 Conditions: PCI: 60 Inspection Comments:	14 Total Samples: 29	Surveyed:	4				
	Trans. B	A #00.		2.500.00G-E4	PCI = 61		
Sample Number: 105 Sample Comments:	Type: R	Area:		3,500.00SqFt	FCI = 01		
48 LONGITUDINAL/	TRANSVERSE CRACK	ING	L	637.00 Ft	Comments:	:	
52 RAVELING			L	3,500.00 SqFt	Comments:	:	
Sample Number: 116 Sample Comments:	Type: R	Area:		3,500.00SqFt	PCI = 66		
48 LONGITUDINAL/	TRANSVERSE CRACK	ING	L	392.00 Ft	Comments:	:	
52 RAVELING			L	3,500.00 SqFt	Comments:	:	
Sample Number: 125 Sample Comments:	Type: R	Area:		3,500.00SqFt	PCI = 46		
45 DEPRESSION			L	63.00 SqFt	Comments:	:	
43 BLOCK CRACKIN	G		L	2,400.00 SqFt	Comments:	:	
52 RAVELING			L	3,500.00 SqFt	Comments:		
48 LONGITUDINAL/	TRANSVERSE CRACK	ING	L	341.00 Ft	Comments:	:	
Sample Number: 133 Sample Comments:	Type: R	Area:		3,500.00SqFt	PCI = 67		
48 LONGITUDINAL/	TRANSVERSE CRACK	ING	L	370.00 Ft	Comments:	:	
52 RAVELING			L	3,500.00 SqFt	Comments:	:	

FDOT

Report Generated Date: April 27, 2015

Network: TPF Name: PETER O. KNIGHT AIRPORT

Branch: TW A Name: TAXIWAY A Use: TAXIWAY Area: 139,742.93SqFt

Section: 115 of 6 From: - To: - Last Const.: 01/01/2008

Zone:

Category:

Rank: P

Surface: AAC Family: FDOT-SAPMP-RL-TW-AAC

 $Area: \quad 11{,}155.15SqFt \qquad \quad Length: \qquad 270.00Ft \qquad \qquad Width: \qquad 40.00Ft$

Shoulder: Street Type: Grade: 0.00 Lanes: 0

Section Comments:

Last Insp. Date: 10/06/2014 Total Samples: 3 Surveyed: 1

Conditions: PCI: 88 Inspection Comments:

Sample Number: 129 Type: R Area: 3,931.00SqFt PCI = 88

Sample Comments:

48 LONGITUDINAL/TRANSVERSE CRACKING L 78.00 Ft Comments:

57 WEATHERING L 3,931.00 SqFt Comments:

FDOT

Report Generated Date: April 27, 2015

Network: TPF Name: PETER O. KNIGHT AIRPORT Branch: TW A Name: TAXIWAY A Use: TAXIWAY Area: 139,742.93SqFt Section: From: -То: -Last Const.: 01/01/2008 120 of 6 Family: FDOT-SAPMP-RL-TW-AAC Surface: Zone: Category: Rank: P AAC Area: 5,876.45SqFt Length: 140.00Ft Width: 40.00Ft Shoulder: Grade: 0.00 Lanes: 0 Street Type:

Section Comments:

Last Insp. Date: 10/06/2014 Total Samples: 2 Surveyed: 1

Conditions: PCI: 80 Inspection Comments:

PCI = 80Sample Number: 131 Type: R Area: 2,695.00SqFt Sample Comments: 48 LONGITUDINAL/TRANSVERSE CRACKING $_{\rm L}$ 80.00 Ft Comments: 45 DEPRESSION L 36.00 SqFt Comments: 57 WEATHERING $_{\rm L}$ 2,695.00 SqFt Comments:

FDOT

Report Generated Date: April 27, 2015

Network: TPF Name: PETER O. KNIGHT AIRPORT

Branch: TW A Name: TAXIWAY A Use: TAXIWAY Area: 139,742.93SqFt

Section: 630 of 6 From: - To: - Last Const.: 01/01/2007 Surface: AC Family: FDOT-SAPMP-RL-TW-AC Zone: Category: Rank: P

Area: 4,673.45SqFt Length: 100.00Ft Width: 40.00Ft

Shoulder: Street Type: Grade: 0.00 Lanes: 0

Section Comments:

Last Insp. Date: 10/06/2014 Total Samples: 1 Surveyed: 1

Conditions: PCI: 94 Inspection Comments:

Sample Number: 100 Type: R Area: 4,673.45SqFt PCI = 94

Sample Comments:

57 WEATHERING L 4,673.00 SqFt Comments:

FDOT

Report Generated Date: April 27, 2015

	1				
Network:	TPF	Name: PETER O. KNIGHT AIRPORT			
Branch:	TW B	Name: TAXIWAY B	Use: TAXIWAY	Area:	16,466.45SqFt
Section: Surface:	150 AAC	of 2 From: - Family: FDOT-SAPMP-RL-TW-AAC	То: -	Zone:	Last Const.: 01/01/1992 Category: Rank: P
Area:	4,673.00SqFt	Length: 60.00Ft Width:	50.00Ft		2
Shoulder:	Street Ty	pe: Grade: 0.00 Lanes: 0			

Section Comments:

Last Insp. Date: 10/06/2014 Total Samples: 1 Surveyed: 1

Conditions: PCI: 57 Inspection Comments:

Sample Number: 200 Type: R Sample Comments:	Area:		4,673.00SqFt		PCI = 57
56 SWELLING		L	11.00	SqFt	Comments:
48 LONGITUDINAL/TRANSVERSE CRACKING	3	L	440.00	Ft	Comments:
43 BLOCK CRACKING		L	162.00	SqFt	Comments:
56 SWELLING		M	10.00	SqFt	Comments:
52 RAVELING		L	4,673.00	SqFt	Comments:

FDOT

Report Generated Date: April 27, 2015

Network: TPF Name: PETER O. KNIGHT AIRPORT Branch: TW B Name: TAXIWAY B Use: TAXIWAY Area: 16,466.45SqFt Section: 2 From: -То: -Last Const.: 01/01/2011 205 of Family: FDOT-SAPMP-RL-TW-AAC Rank: P Surface: Zone: Category: AAC Area: 11,793.45SqFt Length: 280.00Ft Width: 40.00Ft Shoulder: Grade: 0.00 Lanes: 0 Street Type:

Section Comments:

Last Insp. Date: 10/06/2014 Total Samples: 3 Surveyed: 1

Conditions: PCI: 93 Inspection Comments:

Sample Number: 201 Type: R Area: 4,495.00SqFt PCI = 93

Sample Comments:

45 DEPRESSION L 10.00 SqFt Comments: 57 WEATHERING L 4,495.00 SqFt Comments:

FDOT

Inspection Comments:

Report Generated Date: April 27, 2015

Network:	TPF	Name: PETER O. KNIGHT	AIRPORT				
Branch:	TW C	Name: TAXIWAY C		Use: TAXIWAY	Area:	24,005.00SqFt	
Section: Surface:	305 AAC	of 2 From: - Family: FDOT-SAPMP-R	L-TW-AAC	То: -	Zone:	Last Const.: Category:	01/01/2010 Rank: P
	7,165.00SqFt Street Tv	Length: 150.0		40.00Ft		2	
Section Com	•						

Sample Number: 99 Type: R Area: 2,216.00SqFt PCI = 77 Sample Comments:

45 DEPRESSION L 10.00 SqFt Comments: 52 RAVELING L 554.00 SqFt Comments: 57 WEATHERING L 1,662.00 SqFt Comments:

FDOT

Report Generated Date: April 27, 2015

Network: TPF	Name: PETER O. KNI	GHT AIRPORT					
Branch: TW C	Name: TAXIWAY C		Use: TAX	XIWAY	Area:	24,005.00SqFt	
Section: 310	of 2 From: -		То: -			Last Const.:	01/01/1965
Surface: AC	Family: FDOT-SAP	MP-RL-TW-AC			Zone:	Category:	Rank: P
Area: 16,840.00SqFt	Length:	425.00Ft	Width: 40.00F	it			
Shoulder: Street T	ype: Grade: 0	0.00 Lanes: 0					
Section Comments:							
Conditions: PCI: 55	14 Total Samples: 4	Surveyed: 2					
Conditions: PCI: 55 Inspection Comments: Sample Number: 101	Type: R	Surveyed: 2 Area:	4,000.00SqFt		PCI = 54		
Conditions: PCI: 55 Inspection Comments: Sample Number: 101 Sample Comments:				SqFt	PCI = 54 Comments	:	
Conditions: PCI: 55 Inspection Comments: Sample Number: 101 Sample Comments: 45 DEPRESSION		Area:	9.00				
Conditions: PCI:55 Inspection Comments: Sample Number: 101 Sample Comments: 45 DEPRESSION 50 PATCHING 43 BLOCK CRACKIN	Type: R	Area: L L L	9.00 (300.00 (3,700.00 (SqFt SqFt	Comments	:	
Conditions: PCI:55 Inspection Comments: Sample Number: 101 Sample Comments: 45 DEPRESSION 50 PATCHING 43 BLOCK CRACKIN	Type: R	Area: L L	9.00 (300.00 (3,700.00 (SqFt SqFt	Comments Comments	: :	
Conditions: PCI:55 Inspection Comments: Sample Number: 101 Sample Comments: 45 DEPRESSION 50 PATCHING 43 BLOCK CRACKIN 52 RAVELING Sample Number: 103	Type: R	Area: L L L	9.00 (300.00 (3,700.00 (SqFt SqFt	Comments Comments Comments	: :	
Conditions: PCI: 55 Inspection Comments: Sample Number: 101 Sample Comments: 45 DEPRESSION 50 PATCHING 43 BLOCK CRACKIN 52 RAVELING	Type: R	Area: L L L	9.00 ; 300.00 ; 3,700.00 ; 3,700.00 ;	SqFt SqFt SqFt	Comments Comments Comments	:	
Conditions: PCI: 55 Inspection Comments: Sample Number: 101 Sample Comments: 45 DEPRESSION 50 PATCHING 43 BLOCK CRACKIN 52 RAVELING Sample Number: 103 Sample Comments:	Type: R Type: R	Area: L L L L Area:	9.00 ; 300.00 ; 3,700.00 ; 3,700.00 ; 4,000.00SqFt 300.00 ;	SqFt SqFt SqFt SqFt	Comments Comments Comments Comments	:	

FDOT

Report Generated Date: April 27, 2015

Network:	TPF	Name: PETER O. K	NIGHT AIRPOR	RT						
Branch:	TW CENTER Name: TAXIWAY CENTER					Use: TAXIWAY	Area:	55,839.67SqFt		
Section:	315	of 3 From:	-			То: -		Last Const.:	01/01/2008	
Surface:	AC	Family: FDOT-SA	APMP-RL-TW-A	АC			Zone:	Category:	Rank: P	
Area:	11,056.09SqFt	Length:	500.00Ft		Width:	20.00Ft				
Shoulder:	Street Ty	rpe: Grade:	0.00	Lanes:	0					

Section Comments:

Last Insp. Date: 10/06/2014 Total Samples: 4 Surveyed: 1

Conditions: PCI: 80 Inspection Comments:

Sample Number:	201	Type: R	Area:		3,000.00SqFt		PCI = 80
Sample Comments:							
52 RAVELING				L	300.00	SqFt	Comments:
48 LONGITUD	INAL/	TRANSVERSE CRACKING		L	38.00	Ft	Comments:
57 WEATHERI	NG			L	2,700.00	SqFt	Comments:

FDOT

Report Generated Date: April 27, 2015

Network: TPF Name: PETER O. KNIGHT AIRPORT Branch: TW CENTER Name: TAXIWAY CENTER Use: TAXIWAY Area: 55,839.67SqFt Section: From: -То: -Last Const.: 01/01/2008 320 of 3 Family: FDOT-SAPMP-RL-TW-AC Surface: Zone: Category: Rank: P AC

25.00Ft

Area: 11,536.12SqFt Length: 400.00Ft Width:

Shoulder: Grade: 0.00 Lanes: 0 Street Type:

Section Comments:

Last Insp. Date: 10/06/2014 Total Samples: Surveyed: 1

Conditions: PCI: 90 Inspection Comments:

PCI = 90Sample Number: Type: R Area: 3,750.00SqFt

Sample Comments:

48 LONGITUDINAL/TRANSVERSE CRACKING L 19.00 Ft Comments:

57 WEATHERING L 3,750.00 SqFt Comments:

FDOT

Report Generated Date: April 27, 2015

Network: TPF Name: PETER O. KNIGHT AIRPORT

Branch: TW CENTER Name: TAXIWAY CENTER Use: TAXIWAY Area: 55,839.67SqFt

Section: 325 of 3 From: - To: - Last Const.: 01/01/2008 Surface: AC Family: FDOT-SAPMP-RL-TW-AC Zone: Category: Rank: P

Surface: AC Family: FDOT-SAPMP-RL-TW-AC

Area: 33,247.46SqFt Length: 300.00Ft Width: 100.00Ft

Shoulder: Street Type: Grade: 0.00 Lanes: 0

Section Comments:

Last Insp. Date: 10/06/2014 Total Samples: 6 Surveyed: 1

Conditions: PCI: 89 Inspection Comments:

Sample Number: 401 Type: R Area: 5,500.00SqFt PCI = 89

Sample Comments:

48 LONGITUDINAL/TRANSVERSE CRACKING L 80.00 Ft Comments:

57 WEATHERING L 5,500.00 SqFt Comments:

FDOT

Report Generated Date: April 27, 2015

Network: TPF	Name:	PETER O. I	KNIGHT AIRPO	ORT					
Branch: TW D	Name:	TAXIWAY	D			Use: TAXIWAY	Area:	46,607.85SqFt	
Section: 420	of 2	From:				То: -	-	Last Const.	
Surface: AAC Area: 41,269.85SqFt		y: FDOT-S ength:	APMP-RL-TW 1,000.00Ft	-AAC	Widt	th: 40.00Ft	Zone:	Category:	Rank: P
Shoulder: Street	Гуре:	Grade:	0.00	Lanes:	0				
	014 Total S	a mplac.	10 Sum	avad: 0	,				
Last Insp. Date: 10/06/20 Conditions: PCI: 94	014 Total S	amples:	10 Surv	eyed: 2	2				
Section Comments: Last Insp. Date: 10/06/20 Conditions: PCI: 94 Inspection Comments: Sample Number: 305		amples:	10 Surv	eyed: 2		4,000.00SqFt	PCI = 94		
Last Insp. Date: 10/06/20 Conditions: PCI: 94 Inspection Comments: Sample Number: 305 Sample Comments:			10 Surv			4,000.00SqFt 4,000.00 SqFt	PCI = 94 Comment	ts:	
Last Insp. Date: 10/06/20 Conditions: PCI: 94 Inspection Comments:	Ту		10 Surv		L	•		ts:	

FDOT

Report Generated Date: April 27, 2015

Network:	TPF	Name: PET	ER O. KNIGHT AI	RPORT					
Branch:	TW D	Name: TAX	IWAY D			Use: TAXIWAY	Area:	46,607.85SqFt	
Section:	425	of 2	From: -			То: -		Last Const.:	01/01/1992
Surface:	AAC	Family: F	DOT-SAPMP-RL-	TW-AAC			Zone:	Category:	Rank: P
Area:	5,338.00SqFt	Length	: 75.00F	t	Width:	40.00Ft			
Shoulder:	Street Ty	ype:	Grade: 0.00	Lanes:	0				

Last Insp. Date: 10/06/2014 Total Samples: 1 Surveyed: 1

Conditions: PCI: 45 Inspection Comments:

Sample Number: 300 Type: R Sample Comments:	Area:	5,338.00SqFt	PCI = 45
48 LONGITUDINAL/TRANSVERSE CRACKING	L	513.00 H	Ft Comments:
43 BLOCK CRACKING	L	220.00 \$	SqFt Comments:
56 SWELLING	L	150.00 \$	SqFt Comments:
50 PATCHING	M	4.00 \$	SqFt Comments:
52 RAVELING	L	5,330.00 \$	SqFt Comments:
52 RAVELING	M	4.00 \$	SqFt Comments:
45 DEPRESSION	L	63.00 \$	SqFt Comments:

FDOT

Report Generated Date: April 27, 2015

Network: TPF Name: PETER O. KNIGHT AIRPORT

Branch: TW E Name: TAXIWAY E Use: TAXIWAY Area: 23,901.82SqFt

Section: 505 of 4 From: - To: - Last Const.: 01/01/2005 Surface: AAC Family: FDOT-SAPMP-RL-TW-AAC Zone: Category: Rank: P

Surface: AAC Family: FDOT-SAPMP-RL-TW-AAC

Area: 2,353.21SqFt Length: 50.00Ft Width: 40.00Ft

Shoulder: Street Type: Grade: 0.00 Lanes: 0

Section Comments:

Last Insp. Date: 10/06/2014 Total Samples: 1 Surveyed: 1

Conditions: PCI: 87 Inspection Comments:

Sample Number: 99 Type: R Area: 2,353.21SqFt PCI = 87

Sample Comments:

48 LONGITUDINAL/TRANSVERSE CRACKING L 48.00 Ft Comments:

57 WEATHERING L 2,353.00 SqFt Comments:

FDOT

Report Generated Date: April 27, 2015

		. ,							
Network:	TPF	Name: PETER O. K	NIGHT AIRPO	ORT					
Branch:	TW E	Name: TAXIWAY	E			Use: TAXIWAY	Area:	23,901.82SqFt	
Section:	510	of 4 From:	-			То: -		Last Const.:	01/01/1965
Surface:	AC	Family: FDOT-S.	APMP-RL-TW	-AC			Zone:	Category:	Rank: P
Area:	11,125.79SqFt	Length:	275.00Ft		Width:	40.00Ft			
Shoulder:	Street Ty	pe: Grade:	0.00	Lanes:	0				

Section Comments:

Last Insp. Date: 10/06/2014 Total Samples: 3 Surveyed: 1

Conditions: PCI: 59 Inspection Comments:

Sample Number: 100 Type: R Sample Comments:	Area:	3,515.00SqFt	PCI = 59	
48 LONGITUDINAL/TRANSVERSE CRACKING	${f L}$	279.00	Ft Comments:	
54 SHOVING	L	22.00	SqFt Comments:	
45 DEPRESSION	L	48.00	SqFt Comments:	
45 DEPRESSION	L	40.00	SqFt Comments:	
52 RAVELING	L	3,515.00	SqFt Comments:	

FDOT

Report Generated Date: April 27, 2015

Network: TPF Name: PETER O. KNIGHT AIRPORT

Branch: TW E Name: TAXIWAY E Use: TAXIWAY Area: 23,901.82SqFt

Section: 515 of 4 From: - To: - Last Const.: 01/01/2011 Surface: AC Family: FDOT-SAPMP-RL-TW-AC Zone: Category: Rank: P

Area: 4,952.00SqFt Length: 100.00Ft Width: 50.00Ft

Shoulder: Street Type: Grade: 0.00 Lanes: 0

Section Comments:

Last Insp. Date: 10/06/2014 Total Samples: 1 Surveyed: 1

Conditions: PCI: 89 Inspection Comments:

Sample Number: 200 Type: R Area: 4,952.00SqFt PCI = 89

Sample Comments:

48 LONGITUDINAL/TRANSVERSE CRACKING L 44.00 Ft Comments:

57 WEATHERING L 4,952.00 SqFt Comments:

FDOT

Report Generated Date: April 27, 2015

Network: TPF Name: PETER O. KNIGHT AIRPORT

Branch: TW E Name: TAXIWAY E Use: TAXIWAY Area: 23,901.82SqFt

Section: 650 of 4 From: - To: - Last Const.: 01/01/2008

Zone:

Category:

Rank: P

Surface: AAC Family: FDOT-SAPMP-RL-TW-AAC

Area: 5,470.82SqFt Length: 100.00Ft Width: 50.00Ft

Shoulder: Street Type: Grade: 0.00 Lanes: 0

Section Comments:

Last Insp. Date: 10/06/2014 Total Samples: 1 Surveyed: 1

Conditions: PCI: 90 Inspection Comments:

Sample Number: 300 Type: R Area: 5,470.82SqFt PCI = 90

Sample Comments:

48 LONGITUDINAL/TRANSVERSE CRACKING L 16.00 Ft Comments:

57 WEATHERING L 5,470.00 SqFt Comments:

FDOT

Report Generated Date: April 27, 2015

Network: TPF Name: PETER O. KNIGHT AIR	PORT				
Branch: TW F Name: TAXIWAY F		Use: TAXIWAY	Area:	98,144.00SqFt	
Section: 605 of 2 From: - Surface: AAC Family: FDOT-SAPMP-RL-T	W-AAC	То: -	Zone:	Last Const.: Category:	01/01/2008 Rank: P
Area: 88,517.00SqFt Length: 2,400.00Ft Shoulder: Street Type: Grade: 0.00	Lanes: (Width: 35.00Ft			
Section Comments:					
Last Insp. Date: 10/06/2014 Total Samples: 24 Sur Conditions: PCI: 89 Inspection Comments:	rveyed: 4				
Sample Number: 101 Type: R Sample Comments:	Area:	3,546.00SqFt	PCI = 84		
48 LONGITUDINAL/TRANSVERSE CRACKING 57 WEATHERING	I		Comments Comments		
Sample Number: 108 Type: R Sample Comments:	Area:	3,500.00SqFt	PCI = 87		
48 LONGITUDINAL/TRANSVERSE CRACKING	I	75.00 Ft	Comments	:	
57 WEATHERING	I	3,500.00 SqFt	Comments	:	
Sample Number: 114 Type: R Sample Comments:	Area:	3,500.00SqFt	PCI = 90		
48 LONGITUDINAL/TRANSVERSE CRACKING	I		Comments		
57 WEATHERING	I	3,500.00 SqFt	Comments	:	
Sample Number: 122 Type: R Sample Comments:	Area:	3,500.00SqFt	PCI = 94		
57 WEATHERING	I	3,500.00 SqFt	Comments	:	

FDOT

Report Generated Date: April 27, 2015

Network: TPF Name: PETER O. KNIGHT AIRPORT

Branch: TW F Name: TAXIWAY F Use: TAXIWAY Area: 98,144.00SqFt

Section: 610 of 2 From: - To: - Last Const.: 01/01/2008 Surface: AAC Family: FDOT-SAPMP-RL-TW-AAC Zone: Category: Rank: P

Area: 9,627.00SqFt Length: 200.00Ft Width: 35.00Ft

Shoulder: Street Type: Grade: 0.00 Lanes: 0

Section Comments:

Last Insp. Date: 10/06/2014 Total Samples: 2 Surveyed: 1

Conditions: PCI: 69 Inspection Comments:

Sample Number: 116 Type: R Area: 3,803.00SqFt PCI = 69

Sample Comments:

48 LONGITUDINAL/TRANSVERSE CRACKING L 92.00 Ft Comments:

52 RAVELING L 3,803.00 SqFt Comments:

FDOT

Report Generated Date: April 27, 2015

Network: TPF Name: PETER O. KNIGHT AIRPORT

Branch: TW G Name: TAXIWAY G Use: TAXIWAY Area: 12,333.00SqFt

Section: 750 of 1 From: - To: - Last Const.: 01/01/2011
Surface: AC Family: FDOT-SAPMP-RL-TW-AC Zone: Category: Rank: P

Surface: AC Family: FDOT-SAPMP-RL-TW-AC

Area: 12,333.00SqFt Length: 300.00Ft Width: 30.00Ft

Shoulder: Street Type: Grade: 0.00 Lanes: 0

Section Comments:

Last Insp. Date: 10/06/2014 Total Samples: 3 Surveyed: 1

Conditions: PCI: 94 Inspection Comments:

Sample Number: 201 Type: R Area: 4,500.00SqFt PCI = 94

Sample Comments:

57 WEATHERING L 4,500.00 SqFt Comments:

FDOT

Report Generated Date: April 27, 2015

Report Generated Date: April 27, 2015					
Network: TPF Name: PETER O. KNIGHT AIRPOR	T				
Branch: TW T-HANG Name: TAXIWAY TO T-HANGARS	S	Use: TAXIWAY	Area: 7	2,024.05SqFt	
Section: 705 of 1 From: - Surface: AC Family: FDOT-SAPMP-RL-TW-A	ı.C	То: -	Zone:	Last Const.: Category:	01/01/1964 Rank: P
Area: 72,024.05SqFt Length: 3,500.00Ft Shoulder: Street Type: Grade: 0.00	W Lanes: 0	Vidth: 20.00Ft			
Shoulder. Street Type. Grade. 0.00	Lanes. 0				
Section Comments:					
Last Insp. Date: 10/06/2014 Total Samples: 16 Survey Conditions: PCI: 53 Inspection Comments:	red: 3				
Sample Number: 100 Type: R Sample Comments:	Area:	5,453.00SqFt	PCI = 64		
45 DEPRESSION	L	36.00 SqFt	Comments:		
48 LONGITUDINAL/TRANSVERSE CRACKING	L	107.00 Ft	Comments:		
45 DEPRESSION	L	260.00 SqFt	Comments:		
45 DEPRESSION	L	24.00 SqFt	Comments:		
52 RAVELING	L	2,903.00 SqFt	Comments:		
57 WEATHERING	L	2,550.00 SqFt	Comments:		
Sample Number: 112 Type: R Sample Comments:	Area:	5,000.00SqFt	PCI = 57		
48 LONGITUDINAL/TRANSVERSE CRACKING	L	325.00 Ft	Comments:		
53 RUTTING	L	75.00 SqFt	Comments:		
45 DEPRESSION	L	16.00 SqFt	Comments:		
45 DEPRESSION	L	50.00 SqFt	Comments:		
45 DEPRESSION	L	30.00 SqFt	Comments:		
45 DEPRESSION	L	112.00 SqFt	Comments:		
50 PATCHING	L	210.00 SqFt	Comments:		
52 RAVELING	L	3,125.00 SqFt	Comments:		
Sample Number: 140 Type: R Sample Comments:	Area:	4,268.00SqFt	PCI = 34		
48 LONGITUDINAL/TRANSVERSE CRACKING	L	126.00 Ft	Comments:		
45 DEPRESSION	M	779.00 SqFt	Comments:		
45 DEPRESSION	L	10.00 SqFt	Comments:		
50 PATCHING	L	400.00 SqFt	Comments:		
56 SWELLING	L	5.00 SqFt	Comments:		
52 RAVELING	L	3,868.00 SqFt	Comments:		

FLORIDA DEPARTMENT OF TRANSPORTATION AVIATION AND SPACEPORT OFFICE

